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Abstract

Superconducting storage cavities could bene�t RHIC by providing better longitudinal con�ne-

ment of bunches with lower impedance. But there is always the potential for the appearance of

instabilities. This study looks at the stability of longitudinal single- and coupled-bunch modes

for gold in storage and at transition energy, stability while ramping the cavities to �eld, and the

degree of damping required of the fundamental and higher-order modes to guarantee stability and

suÆciently small remnant �eld during transition jump. Most results were obtained using Vlasov

simulations and macro-particle tracking.
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I. INTRODUCTION

There is interest in adding new higher-harmonic cavities (HHCs) to RHIC for a number

of reasons [1]. Without attempting to survey these reasons, there are a number of de�cien-

cies of the existing machine in the longitudinal plane that could be improved through the

replacement of the cavities. The existing normal-conducting (NC) HHCs for storage are

relatively high frequency cavities (197 MHz) [2], into which not all accelerated particles of

a bunch can be transferred to a single bucket. There is also signi�cant di�usion of particles

out of the buckets, some of which end up in the abort gap. And the NC HHCs have high

impedance. In contrast, super-conducting (SC) cavity technology can sustain high voltages

requiring fewer cavities, each of which has lower impedance. SC cavities at lower frequency

could also capture accelerated bunches each into a single bucket with high eÆciency. Fi-

nally, SC HHCs potentially have a hefty e�ect on the performance of stochastic cooling,

which directly impacts luminosity [3].

This study addresses basic longitudinal-stability and engineering issues associated with

the SC cavities. Longitudinal stability encompasses Robinson or low-mode stability, includ-

ing higher-order single-bunch coherent modes driven by the high-Q fundamental (accelerat-

ing) modes of installed cavities; coupled-bunch (CB) modes driven by both the accelerating

mode a�ecting nearby CB (small jsj) modes, and higher-order modes (HOMs) a�ecting CB

modes over which they reside; and stability during storage, acceleration, and, particularly,

transition. Damping of the fundamental and HOMs is the tool used to suppress these insta-

bilities, and it is essential to determine the damping of each rf mode of the new SC HHCs

needed at each of these energies. Damping of the fundamental is also required to suppress

�eld at the fundamental during transition, which would otherwise push particles out of the

bucket or increase the emittance. But more stringently, damping is required at the time

when the revolution line nearest the rf line crosses the cavity resonance, at an energy near

transition, potentially exciting the s = +1 coupled-bunch mode.

So considerable damping of the fundamental of the SC HHCs, and of HOMs, is required

during acceleration. After acceleration, when the HHCs are brought to voltage, the damping

of the fundamental is removed. During storage, some damping of HOMs must remain.

This study looks at these stability issues for 100 GeV/u gold beams during storage and

gold at transition energy, and determines the minimum damping required of the rf modes.
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Macroparticle tracking and Vlasov simulations were used to determine these thresholds,

results of which are reported in Sec. II. Simulations of ramping the SC HHCs to voltage are

reported in Sec. III.

At one point there was some discussion of how acoustic noise is mapped to the cavity

�eld and phase. An analytic calculation of this e�ect for passively driven SC cavities is given

in Sec. IV. The negligible damping of these cavities makes the formulas simple.

Finally, results of numerical calculation of the periodic transient associated with

impedance in the fundamental modes of the cavities and the abort gap are given in Sec.

V. The transient has the e�ect of shifting the bunches in time, potentially a�ecting the

interaction point. The results show only very small shifts of the order of 10 ps, values that

were not unexpected.

Machine parameters used in these calculations are given in Table IV, Table I for gold in

storage, and Table II for gold at transition energy. Exceptions to these numbers are given

in the text. Frequencies and impedances of longitudinal RF modes of the SC cavities from

Super�sh (monopole modes only) are given in Table III.

II. COUPLED BUNCH MODE STABILITY

Coupled-bunch modes are driven by impedance overlapping positive harmonics of the

synchrotron frequency o�set from non-rf revolution lines (upper sidebands). Impedance

overlapping lower sidebands damp these modes [4]. RF cavities are often the dominant source

of impedance driving these modes. Landau damping via synchrotron frequency spread [5]

is a powerful damping mechanism of these modes. In a hadron machine and where there is

little synchrotron frequency spread, such as is the case for short bunches in a deep potential

well, there is rather little damping and an active feedback system may be required. In

RHIC �tted with SC HHCs, it is not clear how much Landau damping is available, and at

what magnitude of HOM impedance exists the threshold for instability. This section reports

the results of calculations of impedance thresholds of longitudinal coupled-bunch modes in

RHIC. Gold beams in storage, and gold at transition energy are treated.

In these calculations, the cavity impedance is modeled as a single HOM centered on

the anti-damping sideband, and whose quality factor is set high enough not to overlap the

damping sideband. In this way, a worst case threshold for a single HOM is determined. It

3



does not model the possibility of pile-up of multiple resonances over a single anti-damping

sideband, nor does it take into account partial cancellation due to impedance over both

damping and anti-damping sidebands.

Values of R=Q for the lowest-lying longitudinal modes are given in Table III. They were

calculated by Damayanti Naik using Super�sh. There is some sensitivity of the higher modes

to details of the shorted end of the cavity, particularly the 1107-MHz mode. So there is some

doubt in my mind about the accuracy of Super�sh's numbers for those particular modes and

that this geometry is somehow pushing the ability of Super�sh in some way.

Most of these calculations were performed with a macro-particle tracking code, which

tracks particles under the in
uence of the rf �eld of the main and HHC cavities, and under

the in
uence of the HOM �eld. The code was developed for the purpose. It was tested with

short gaussian bunches for growth rate against Ref. [4], Eq. 18, and that upper sidebands

excite, and lower sidebands damp, instability. Potential well distortion due to a broad-band

impedance was not applied.

A few thresholds for Gold in storage were determined through my Vlasov solver [6].

However, the simultaneous long bunches, high HOM frequencies, and small growth rates

that characterize RHIC made this code prohibitively slow for most runs. It is practical,

however, for a limited number of runs at lower HOM frequencies. Vlasov runs provide a

very clean signal for unstable modes, giving precise coherent frequencies and growth rates.

As with tracking runs, Vlasov runs at di�erent HOM impedances are extrapolated to the

threshold at zero growth rate. When they can be used at all, Vlasov runs are superior to

tracking runs for this purpose. In Sec. IIA, the ability of Vlasov runs to sort out coupled

multipole modes is illustrated.

Machine parameters for these runs are given in Tables IV, I (Au in storage), and II (Au

at transition energy). Some calculations for shorter bunches lengths were also calculated

and appropriately marked; a set of runs for Gold at transition energy, but with the higher

main-cavity �eld (300 kV) used at least until 2003 [7]. These results are useful to highlight

trends.

Error bars in the tracking runs were calculated in some cases with multiple runs to obtain

an error bar at each frequency and impedance. Then at each frequency, each impedance

was regarded as an independent random gaussian variable. Monte Carlo runs were then

used to compute ensembles of least square �ts and intercepts, and the mean and standard
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deviation were then given as the threshold and error bar. In those cases where a frequency

has only single runs at each impedance, each impedance is given the standard deviation of

the residual error of about the least square �t of all growth rates at that frequency as its

its error bar. Monte Carlo runs proceeded from there. I know this is not rigorous, but this

procedure helped me to identify weak data and �rm up those data with more runs.

A simple broad-band impedance (BBI) model of the rings was provided by Gang Wang

(Table IV). Self-consistent calculation of the potential wells and bunch pro�les show that

this model has no discernible impact on the bunch pro�les of gold in storage due to the

deep potential wells provided by the SC HHCs. The BBI does, however, a�ect the pro�les

of gold at transition energy. This is due to the fact that the SC HHCs are detuned and

damped, and that the main cavities are at low voltage. But even so, the pro�les are only

slightly lengthened. Figure 1 shows the impact of the BBI on gold at transition energy and

in storage with initially gaussian pro�les of the appropriate lengths.

The BBM model was not used in any bunch simulation reported here. The self-consistent

calculation of pro�les converged at about 400 grid points due to the high frequency of

the impedance. A similar number of grid points is needed for the Vlasov runs, which is

prohibitive given the long simulations required to search for unstable modes.

A. Gold in Storage

For gold in storage, thresholds at a number of frequencies were bracketed by the tracking

runs, and three Vlasov-calculated thresholds are also reported. These are collectively plotted

in Fig. 2. Thresholds for short bunches (0.26-ns length compared to 2.4 ns) are also plotted

in that �gure (machine parameters are the same).

For the macro-particle tracking runs, initially gaussian bunches were prepared. For the

three Vlasov points, the buckets were initially populated in phase space in proportion to

E��=(Hs�H), whereH is the hamiltonian,Hs is the value of the hamiltonian on the separatrix,

and � is a constant adjusted for the correct bunch length. This phase-space density is not

particularly unrealistic, yet has the advantage of going smoothly to zero at the separatrix.

These thresholds are all quite high (except for the short-bunch results), all above 1 M
,

and do not impose a very tight constraint on HOM damping. Gold at transition energy,

it turns out, has lower thresholds. This is due, even though the bunches are longer, to
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FIG. 1: Bunch pro�les of gold at transition energy (a) and in storage (b), without (red) and with

(blue) a broad-band impedance model for RHIC provided by Gang Wang. This impedance model

is a resonator with jZnj=n = 3:5 
, Q = 1, and !r = 2� � 1:7 GHz, and the undistorted bunch

pro�les are gaussian.

less Landau damping in the absence of �eld in the HHCs, which provide more synchrotron

frequency spread.

Tracking runs were usually not able to clearly identify the unstable mode. Spectra of

the HOM �eld often show multiple lines of similar height. To check the tracking results,

Vlasov runs were used to look in detail at stability at the 168-MHz HOM frequency. Runs

at a number of impedances gave precise growth rates at each (Fig. 3a). The highest four

impedances were unstable with multipole order a = 3 (sextupole mode); the others were

unstable with order a = 2 (dipole mode). The highest three impedances extrapolated very

TABLE I: Gold in storage.

Parameter symbol value unit

Synchronous energy T = 100 GeV/u

Revolution frequency !0=2� = 78:2 kHz

Main cavity voltage (total) V1 = 300 kV

SC HHC voltage (total) V2 = 2.5 MV

Lorentz factor at transition 
t = 22:3

Bunch length �t = 2.2 ns

SC HHC quality factor QHHC = 5� 108 (est)

SC HHC detuning �!HHC = �2� � 151 s�1
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FIG. 2: Impedance thresholds (a) and Q thresholds (b) for gold in storage as a function of HOM fre-

quency. In (a), green points represent stable macro-particle tracking runs, and red points represent

unstable macro-particle tracking runs. These points should be regarded as bracketing thresholds.

Violet points represent thresholds determined by Vlasov runs. Blue points are thresholds for short

(0.26-ns) bunches computed by Vlasov runs. The dashed line proportional to HOM frequency (25

k
/MHz) is used to compute the Q thresholds in (b). With the exception of the Vlasov run at

168 MHz, all runs were with the momentum compaction at 0.000865, about half the correct value.

precisely to a sextupole-mode threshold of 34 M
. But the fourth a = 3 point does not

correlate well at all, and seems to be at a transition to the a = 2 mode. So I believe that

this behavior indicates that the a = 3 and a = 2 modes are fairly tightly coupled in that

transition region, a behavior I had seen in studies of NSLS-II stability [8]. More runs would

clarify this.

The analytic form for coherent frequency shifts for gaussian bunches is Eq. 18 of Ref. [4],

�
 = i
�Iav!

2
0

2�E0!s

1

2a(a� 1)!
(!0�� )

2a�2Ze� (2.1)

where � is the momentum compaction, E0 is the total energy, !s is the synchrotron frequency,

and Ze� is the e�ective impedance given in Eq. 19 of Ref. [4],

Ze� =
1X

m=�1

(mB + s)2a�1Z[(mB + s)!0 + 
]e�((mB+s)!0�t)2=2 (2.2)

where s = 0; 1; � � � ; B�1 is the coupled-bunch mode number, 
 is the frequency of the mode,

usually very close to a multiple of the synchrotron frequency, and �t is the bunch length.

These equations are useful for estimating the multipole-order-dependence of the frequency

shift (including growth rate) and, in particular, the slope of the growth rate with respect
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FIG. 3: Growth rates of gold in storage at varying 168-MHz HOM impedances (a), and multipole-

order dependence of coherent-frequency shifts of Eq. 18 of Ref. [4] (b). In (a), the points are num-

bered by the multipole order of the unstable mode as determined by the synchrotron-frequency

harmonic of the line in the HOM spectrum. The blue line is a linear �t to the three highest

impedance points, precisely indicating an extrapolated threshold of 34.2 M
 for the a = 3 (sex-

tupole) mode, inconsistent with the fourth a = 3 point at 34 M
. The bunch length is �� = 2:05

ns. Plot (b) has the slopes of the imaginary part of Eq. 2.1 (growth rate) as a function of multipole

order. The blue point marks the slope of the �t in (a). The momentum compaction used in these

runs was 0.0019.

to impedance, plotted in Fig. 3b. That the formula is accurate is shown by comparing the

slope of the linear �t of Fig. 3a for the sextupole mode, with Eq. 2.1 in Fig. 3b.

The slope predicted by the formula for the quadrupole mode is not much smaller that

for the sextupole mode. Based on that slope and Fig. 3a, the quadrupole threshold can be

expected not far from 15 M
.

The question that next comes to mind is if the dipole (a = 1) mode is unstable at lower

impedance where its growth rate would be lower yet. Vlasov and tracking runs become

even more lengthy in this regime. Simulations done to date don't show it, but it is still a

sensitivity issue.

Note that Ze� is strongly muted at high frequencies, where it is also sensitive to the bunch

length, due to the exponential factor in Eq. 2.2.

During the course of the simulations of gold in storage, there were a couple erroneous

machine parameters that were carried through to an advanced stage. That the calculations

were so lengthy precludes repeating all the runs. The �rst parameter is the rf �eld in the
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main cavity, which was given the value of 300 kV each cavity, instead of 300 kV total.

The three lowest frequencies were rerun. I don't think that the error a�ects the results

signi�cantly for the reason that the total rf �eld the beam sees is dominated by the SC

HHCs, so that the potential well is rather little a�ected by that 300-kV error. Furthermore,

the correct rf potential has more synchrotron frequency spread than the one used, which

means that the calculated impedance thresholds are (at least slightly) underestimated.

The second error is more serious, which is that the momentum compaction used in most of

the runs was 0.000865, about half the correct value. The 168-MHz Vlasov runs in Fig. 3 are

intended to estimate the error in the thresholds introduced by this error. Fortunately there

is very little di�erence between the earlier tracking threshold and this new Vlasov threshold.

In fact, the dashed line of Fig. 2 underestimates the thresholds by a greater margin that the

uncertainty suggested by the 168-MHz calculation. So the earlier calculation with the error

still serves the purpose of conservatively establishing the damping required of the HOMs for

gold in storage.

B. Gold at Transition Energy

Growth rates were �rst calculated for main-cavity �eld used at the time of commissioning

of the current transition-jump method [7], which was 300 kV. Bunch lengths at that time

were 1.3 ns, a length that provided less damping of the longitudinal quadrupole mode at

the �rst SC HHC HOM (168 MHz). Since then, the main-cavity �eld used during that

part of the ramp was reduced to 50 kV with bunch lengths at 2.6 ns. Later calculation of

thresholds with the lower �eld shows a threshold Q at the lowest SC-cavity HOM that is

much higher|2 k compared to 0.2 k with the shorter bunch. The value of the longitudinal

emittance at the start of the transition jump, where the beam is most sensitive to instability,

was assumed in these calculations.

Detection of instability and stability in macro-particle runs has been problematic. There

is shot noise in these computer runs due to the tracking of particles, so the HOM excitation

is necessarily noisy. (I used the HOM �eld exclusively as a diagnostic.) In runs well above

threshold it is easy to see instability; but at lower impedance, it was not obvious when the

bunches were stable. So bracketing of the instability threshold does not seem to be generally

workable. This was even more diÆcult at higher HOM frequencies and longer bunches.
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FIG. 4: Impedance thresholds for gold at transition energy as a function of HOM frequency. Blue

points are thresholds for 1.3-ns bunches, and red points are for 2.6-ns bunches. See the text for

explanation of error bars.
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FIG. 5: Q thresholds for gold at transition energy as a function of HOM frequency. Blue points are

thresholds for 2.8-ns bunches, and red points are for 1.3-ns bunches. See the text for explanation

of error bars.
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TABLE II: Gold at transition energy.

Parameter symbol value unit

Synchronous energy T = 21.7 GeV/u

Main cavity voltage V1 = 50 kV

Revolution frequency !0=2� = 78:1 kHz

SC HHC voltage V2 = 0

Momentum compaction � = 5:42 � 10�4

Bunch length �t = 2.6 ns

Longitudinal emittance = 0.4 eV-s (95%)

With shorter bunches where there is a better-de�ned synchrotron frequency, I was suc-

cessful fourier analyzing the complex-valued HOM �eld over individual synchrotron periods.

This resulted in mode intensities of all modes at once, some of which could then be plot-

ted as a function of time and growth rates extracted. But with longer bunches and more

synchrotron frequency spread, this method is not applicable. There are typically a number

of spectral lines of similar intensity present indicating the presence of multiple modes, and

time-domain plots of the HOM �eld show a lot of 
uctuation due to interference among these

modes. In the end, most of the long-bunch growth rates were extracted from time-domain

log plots of the HOM �eld intensity, in which I looked for an exponential-growth regime and

corresponding time constant. Only in some runs was I able to identify a dominant unstable

mode.

I also experimented with seeding modes. But without knowledge of details of the unstable

modes, it is diÆcult seed one or a few of these modes preferentially. So that e�ort was

unsuccessful, except for the quadrupole mode at lower frequencies.

Due to these problems, I did not try to compute higher-frequency thresholds for the 2.6-ns

bunches at transition energy. It is reasonable to assume that they are higher than those for

1.3-ns bunches, and that they follow the trend of increasing with greater HOM frequency.
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C. Coupled-bunch Modes Near the RF Harmonic

The calculations up to this point assume four bunches and an impedance on an anti-

damping sideband that by construction does not overlap a damping sideband. So they do

not apply to the fundamental mode of an impedance, which is set near an rf harmonic.

Such modes are large by design, and in a large ring have signi�cant overlap with nearby

revolution lines. Ordinarily, there is a degree of cancellation due to impedance at both the

damping and anti-damping sidebands. Due to this cancellation, an unstable nearby mode

is not necessarily expected. But during acceleration of a heavy-ion beam in this large ring,

the revolution lines move widely relative to the frequency of the unpowered cavities due to

the changing speeds of the ions. In fact, it is when the revolution line adjacent to the rf

harmonic crosses the cavity resonant frequency that the s = +1 CB mode is most strongly

excited. So during acceleration this cancellation is spoiled.

In any case, the Vlasov and macro-particle-tracking calculations discussed to this point

are not for practical reasons capable of predicting the stability of modes near rf lines in a

�ll with a large number of bunches.

But they do predict the e�ective impedance needed to drive a mode to instability. At

the frequency of the SC HHC, this threshold impedance is (nh)2a�1 � 15 k
� form factor,

where nh is the harmonic number of the SC HHC, shown in Fig. 4, and the form factor is

the exponential in Eq. 2.2. So, given the impedance (R=Q) of the fundamental, one can

calculate the Q of the fundamental at threshold as a function of cavity detuning. Remember

that the cavity detuning during acceleration is dominated by the sweep of the revolution

frequency due to the changing velocity of the particles. At transition this detuning is about

52 kHz. As was mentioned earlier, the worst case is expected to be when the detuning is

equal to the revolution frequency, i.e., 78 kHz.

The result of this calculation is given in Fig. 6. The cavity is assumed tuned near the

�nal rf frequency. Later, before the beam reaches �nal energy, the cavity is detuned 10 kHz

below the �nal rf frequency in preparation for reducing the damping and ramping up the rf

�eld. Also plotted is the fundamental mode damping needed to suppress remnant rf �eld in

the cavities during transition jump below its maximum (10 kV total) [2].

The plot shows that keeping the cavity �eld below the 10-kV limit at transition does

not constrain the cavity Q in that the �eld does not reach the limit even in the Q ! 1
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FIG. 6: Stability of s = �1 coupled-bunch dipole modes at transition energy in terms of SC

HHC main mode Q and cavity frequency relative to the instantaneous cavity detuning �!(t) =

!res�nh!0(t), where !res is tuned near the �nal rf frequency. In regions (a) the s = �1 CB mode is

unstable. Also plotted is region (b) where the remnant �eld in the mode is over the 10 kV limit for

the transition jump prescribed in Ref. [2]. The sweep of rf frequency during acceleration is denoted

by the arrow, and transition itself is denoted by the vertical dashed line. The beam is stable and

remnant �eld is less that 10 kV in regions (c). On the right the vertical scale is expanded �10.

Two SC HHCs per ring are assumed.

limit. Instead, the CB mode stability is the deciding factor, which constrains the Q below

a few hundred during acceleration. The lowest threshold occurs around where the nearest

non-rf revolution line crosses the cavity resonance, which occurs at 
 ' 19, not far from

transition where 
 ' 22. The scaling of the growth rate in Eq. 18 of Ref. [4] with energy and

synchrotron frequency suggests that above transition, the threshold Q may be progressively

higher than is indicated by this calculation at 
 ' 22, which has that above 
 = 30 the Q

is not constrained at all.

Stability of CB modes driven by the NC HHC is not particularly relevant to this study.

Its calculation does, however, serve as a sanity check of the SC HHC calculation and I

include the results for completeness. Frequency scans of the damped NC cavity show two

split modes (Fig. 7a): the impedance is quite a lot larger at rf harmonics about 1.5-MHz

o�set each way, compared to at the rf harmonic. In the tracking runs, it is not clear exactly

which multipole mode is �rst unstable, although Vlasov runs clearly show that it is a = 3.

In Fig. 7b is plotted the e�ective impedance of the NC HHC fundamental for the third

multipole (a = 3) mode for both 1.3-ns bunches with V1 = 300 kV [7], and 2.6-ns bunches

with V1 = 50 kV. They are compared with the threshold, 45 k
 (Fig. 4), at about that
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FIG. 7: Undamped and damped NC storage cavities' impedance as a function of frequency o�set

(a), and e�ective impedance as a function of CB mode number s (Eq. 2.2) for the third (a = 3)

multipole mode (b). In (b), the two bunch lengths are determined by di�erent main-cavity �elds

used during acceleration at di�erent times in the machine's life (see Table II and Ref. [7]). By

e�ective impedance is meant Ze�=(nh)
2a�1, where nh is the harmonic number of the cavity.

frequency. That the e�ective impedances are as small as they are is due to the long bunches

and the gaussian form factor in Eq. 2.2.

III. RAMPING UP THE CAVITY Q AND FIELDS

After acceleration, the rf-cavity damping and frequencies must be brought to their values

for operation in storage. The resonant frequencies of all HHCs are crossed by their rf lines

during acceleration, which requires that they be damped at the crossing. Here it is assumed

that they will be damped until �nal energy, at which time the damping is removed while still

detuned, and then cavities are tuned and powered (in the case of the NC HHC) to bring the

cavities to voltage. Zero-mode stability throughout this time must be ensured. Single-bunch

tracking runs were used to simulate this process.

Since the main cavities are powered, they require a source current distinct from the beam.

While ramping down the damping of the SC HHC, the beam was found to be unstable. A

simple feedback scheme for main-cavity tuning, level, and phase was used to stabilize it

during this time. While ramping up the SC HHC �eld, this scheme became unstable,

requiring it to be switched o�. Figure 8 shows the �eld intensity of the main and SC HHCs

while bringing up the SC HHCs. The SC HHC detuning was ramped in such a way to

linearly ramp the voltage. The detuning started at -10 kHz and ramped to -200 Hz. The

bunch is compressed by a factor of two.
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FIG. 8: Simulated main cavity (left) and SC HHC (right) �eld intensities as a function of time while

the SC HHC is brought to voltage, simulated by macroparticle tracking. During period (a), the

damping of the SC HHC is being reduced to its operating value, and during period (c) the cavity

detuning is being reduced to its nominal value. During periods (b) and (d) there is no change.

The arrow in (a) indicates the point at which the main-cavity servos were switched o�. The NC

HHCs are switched o� and damped with the damped impedance of Fig. 7a. 1000 macroparticles

were used in the simulation.

Figure 8 shows phaser plots of the main-cavity and SC-HHC �elds during the ramps. Both

main and SC-HHC phasers are nominally imaginary for bunch con�nement (the synchronous

phase is assumed zero). The plots show signi�cant shot noise and transients associated

with transitions between the di�erent phases of the ramp. That the SC HHC phaser trend

deviates from this nominal phase (+90Æ) is due to a small error in the main-cavity generator-

current intensity and phase, which shifts the bunch phase from the nominal. This shift is

not signi�cant.

While the NC HHCs remain in the rings, there is the option to ramp them to voltage as

well. Bringing up the voltage is, like with the SC cavities, a two step process of reducing

the damping, followed by reducing the detuning, with the di�erence that the rf power is

brought up with the detuning ramp. Due to the complexity of the damped impedance (Fig.

7), it is not possible to know in detail how the damping is reduced by removal of the loading

probe(s). For this reason, I did not try to simulate beam while the damping is reduced.

Instead, I started with the cavities at their undamped Q and simulated while the detuning

was reduced from -35 kHz, where the cavity �eld is 8 kV (without rf power applied), to -1.5

kHz. (These �gures are total for the seven cavities.) The cavities have a 400-kHz tuning
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FIG. 9: Simulated main cavity (left) and SC HHC (right) �eld phasers while the SC HHC is

brought to voltage, simulated by macroparticle tracking. The NC HHCs are switched o�, detuned,

and with the damped impedance of Fig. 7a. 1000 macroparticles were used in the simulation.

range.

But early on I encountered a problem that tracking (and stochastic-cooling) people no

doubt know very well. The impedance of the seven NC HHCs is quite large because of the

number of cavities and the impedance of each. Beam loading in the cavities is, however,

greatly reduced due to the long bunches and the high frequency of the cavity, i.e., the form

factor e�(nh!0�� )
2=2 for a gaussian bunch is quite small. Even without coherent motion, with

a modest number of macroparticles, shot noise in the beam is picked up by the cavity very

eÆciently and heats the beam quickly. I don't know the parametric dependence of this e�ect,

but a large number of macroparticles is needed to reduce the magnitude of this problem,

more that I had been using for simulations with the NC HHC damped. With the NC HHCs

undamped, it seems that the heating of the beam requires a prohibitively large number of

macroparticles to get realistic behavior of the bunch. So this simulation was not completed.
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IV. FIELD FLUCTUATIONS DUE TO MICROPHONICS IN A PASSIVELY

DRIVEN SUPERCONDUCTING CAVITY

The presence of microphonic detuning of an SC cavity inevitably introduces variation

of the �eld intensity and phase of the cavity. Tolerances in these �eld 
uctuations imply

tolerances of the detuning 
uctuations. This section relates the latter to the former.

We model the cavity as an L-R-C tank circuit, with the capacitance being time dependent.

I(t) =
d

dt
(C(t)V (t)) +

V (t)

R
+

1

L

Z
dt V (t) (4.1)

where I(t) is the beam current, and V (t) is the voltage in the cavity. Di�erentiating once

gives us the di�erential equation

d

dt
I(t) =

d2

dt2
(C(t)V (t)) +

1

R

dV (t)

dt
+

1

L
V (t) (4.2)

or
1

C(t)

d

dt
I(t) =

d2V (t)

dt2
+ 2

 
_C(t)

C(t)
+ �(t)

!
dV (t)

dt
+

 
!r(t)

2 +
�C(t)

C(t)

!
V (t) (4.3)

where �(t) = 1=2RC(t). C(t) is prescribed by

C(t) = C0(1 + � cos!mt) (4.4)

where !m is the frequency of the frequency modulation, and � its intensity. This implies

that

!r(t)
2 = 1=LC(t) = (!rf +�!)2 � 2!rf Æ! cos(!mt) + � � � (4.5)

where Æ! = �(!rf +�!)=2 ' �!rf=2.

To identify useful approximations, we look at the leading order of the perturbative parts

of various terms of Eq. 4.3. First note that Æ!=2� is of order 1 Hz implying that � � 10�8.

The perturbative part of the term containing !2
r scales as �!2

r0 V2. The _C=C term scales

as �!m !rf V2 a factor of !m=!rf smaller. The �C=C term scales as �!2
m V2, smaller still by

the same factor. The time-dependent part of the �(t) term scales as ��0 !rf V2, and � is

small to start with. Finally, the perturbative part of the left-hand side of Eq. 4.3 scales

as ��! !rf V2. So the leading term in the microphonic perturbation of the cavity is the

time-dependent part of !r(t)
2. Other terms are smaller by the factors of Æ!=!rf, �!=!rf, or

!m=!rf.
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In what follows, all other terms are dropped.

V (t) is separated into two terms, the �rst, �V , describing the steady-state �eld in the

absence of detuning,

_I=C0 =
��V + 2�0

_�V + (!rf +�!)2 �V (4.6)

and the second, ÆV , describes the perturbation.

0 = �ÆV + 2�0
_ÆV + (!rf +�!)2ÆV � 2!rf Æ! cos(!mt)V2 cos!rft (4.7)

Since the cavity is superconducting, the damping �0 is quite small. Although I retain the

term in more complete calculations, that !rf is many resonance widths from the resonant fre-

quency means that in this case cavity damping does not play a signi�cant role in microphonic

noise transfer to the cavity �eld.

Equation 4.7 is solved directly for the result

ÆV (t) =
Æ!

�!2 � !2
m

(�! cos(!mt) cos(!rft)� !m sin(!mt) sin(!rft))V2 (4.8)

The �rst term is in phase with the cavity �eld: it is amplitude modulation (AM). The second

term is at 90 degrees with respect to the �eld: it is phase modulation (PM). So the peak

amplitude and phase modulation intensities in fractional terms are

AM =
Æ!�!

�!2 � !2
m

(4.9)

PM =
Æ! !m

�!2 � !2
m

(4.10)

Because of the cos!mt and sin!mt factors in the AM and PM responses, respectively, the

former response function is real, and the latter is imaginary, in the frequency domain. For

reference, �! ' 2� � 151 Hz with two cavities, !m is a few tens of Hz, and Æ! is expected

to be in the 0.1- to 1.0-Hz range. So the principal uncertainty determining the severity of

amplitude and phase modulation arising from microphonics is Æ!.

Another issue is the presence of noise at modulation frequencies !m near �!. The �! 0

approximation eventually fails, but, because � is so small, there is severe ampli�cation before

that happens. Note also that with only one SC cavity in each ring, �! is half the number

given | 75 Hz | assuming the one cavity is to support the full voltage. This smaller

number puts the detuning nearer the cavities' population of noisy acoustic resonances.
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V. PERIODIC TRANSIENT IN THE CAVITY FIELD DUE TO THE ABORT

GAP

By periodic transient I mean the part of the rf voltage in the cavities that is periodic in

the revolution period and not having a component at the rf frequency and harmonics. In

fourier space, this means revolution lines in the cavity �eld that are not harmonics of the rf

frequency. The potential impact of such a transient is that the interaction points vary with

bunch along the bunch trains. This is not a new problem in RHIC. The point of this section

is to determine if the SC cavities greatly aggravate such shifts in the interaction points.

Since the rf �eld in the main cavities as a function of time is nearly linear in time near

the synchronous phase, the shift of the synchronous phase due to a perturbation of the �eld

intensity is nearly proportional to the perturbation. This proportionality for the synchronous

phase ts expressed in terms of time is

dts '
1

dV (t)=dt

����
t=0

� ÆV (5.1)

where V (t) is the total rf voltage as a function of time. Above transition, a positive shift of

the rf �eld at the synchronous phase delays the bunch. In storage,

1

dV (t)=dt

����
t=0

= 1:01 ps/kV (5.2)

The periodic transient was calculated by simply applying kicks to the cavities at the

nominal times of each bunch, given that the ring is �lled as given in Table IV and the bunch

length as given in Table 2. A bunch form factor of e�(nh!0�t)
2=2 is assumed. Over time,

the �eld in the cavity damps to the periodic �eld. Since the shifts are so small, there is no

need for a self-consistent calculation. When the nearest (non-rf) revolution lines are many

resonance widths from the resonant frequency, as is the case for the SC cavities, the resulting

behavior is dominated by the reactive part of the impedance and is insensitive to the exact

Q to which the cavities are loaded.

For the SC cavities, the �eld perturbation at the nominal synchronous phase and the

resulting shift in synchronous phase are given in Fig. 10. They result in a �2 ps shift along

the train. For comparison, the shift due to the main cavities is shown in Fig. 11. Finally,

also for comparison, the shift due to the NC HHCs when not in the damped state is shown

in Fig. 12.
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FIG. 10: SC cavity �eld perturbation (two cavities) at the nominal synchronous phase (a), and the

resulting shift in the synchronous phase (b), of each bucket of a turn. For gold in storage.
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FIG. 11: NC main cavity �eld perturbation (two cavities) at the nominal synchronous phase (a),

and the resulting shift in the synchronous phase (b), of each bucket of a turn. For gold in storage.
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FIG. 12: NC HHC �eld perturbation (seven cavities) at the nominal synchronous phase (a), and

the resulting shift in the synchronous phase (b), of each bucket of a turn. For gold in storage and

the cavity undamped.
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The shifts are of similar magnitude for all cavities (with the exception of the NC HHC

when damped). This occurs even though the R=Qs of the seven NC HHCs is so much

larger. What evens the score is the higher frequency of the NC HHCs, which results in a

much smaller form factor. Total shifts are the sum of shifts due to the three sets of cavities|

around 10 ps total. So this section has been a long winded way to say that the shifts are

insigni�cant.

VI. SUMMARY

Longitudinal CB mode stability constrains the damping of the fundamental and HOMs

of the SC HHCs in a few ways. The fundamental must be fairly strongly damped during

acceleration to suppress the s = +1 CB mode when that revolution line crosses the cavity

fundamental mode. This constraint more than meets the requirement that the �eld in

the fundamental at transition be suÆciently small to prevent signi�cant particle loss or

emittance growth. Damping of the �rst HOM is constrained by tracking simulations of CB-

mode stability during acceleration to about Q = 1 k or less. Damping of higher-frequency

HOMs is more relaxed. In contrast, Vlasov and tracking simulations do not signi�cantly

constrain HOM damping during storage. Resonance widths can be narrower than revolution

line spacing.

Macro-particle tracking simulations were used to check that reducing the damping of

the fundamental and ramping up the �eld of the SC HHCs following acceleration does not

present any sort of problem.

An analytic calculation of passively driven SC-cavity intensity and phase modulation

driven by cavity frequency modulation returned simple formulas for AM and PM (ampli-

tude and phase modulation) (Eqs. 4.9 and 4.10). The AM and PM formulas relate these

quantities to the magnitude of the cavity frequency modulation, the modulation frequency,

and the cavity detuning. The zero-cavity-damping approximation fails when the modulation

frequency o�set is within a few line widths of the cavity resonance, a frequency span that is

quite small for passively driven SC cavities. But AM and PM noise can become quite large

when noisy acoustic modes approach the cavity resonance.

Finally, a check of synchronous phase shifts of bunches along the train due to the SC

HHCs show that they are very much smaller than the bunch lengths, as they have always
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been.
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TABLE III: SC HHC longitudinal modes calculated by Damayanti Naik using Super�sh.

Frequency R=Q Frequency R=Q

(MHz) (
) (MHz) (
)

56 46.1 762 1.52

166.9 11.45 866 0.115

275 0.02 970 0.005

376.5 9.42 1073 0

468.4 27.05 1107 29.4

560 21.1 1177 0.71

659 7.48
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TABLE IV: RHIC ring parameters [2, 7, 9], symbols, and values assumed in this study. Some

parameter pertain to gold ions.

Parameter symbol value unit

Circumference cT0 = 3833.845 m

Longitudinal emittance = � 0:5 eV-s (95%)

Gold ions per bunch = 109

Transition 
t = 22.3

RF buckets h = 360

Buckets potentially �lled B = h=3

Bunches in �ll = 105 every third bucket

Average beam current Iav = 104 mA

Broad-band impedance jZnj=n = 3.5 


!BBI = 2� � 1:7 GHz

Main cavity impedance R0=Q0 = 63.64 


Main cavity count ncav = 2 per ring

Main cavity frequency frf = 28 MHz

Main cavity harmonic h = 360

NC HHC impedance per cell R0=Q0 = 162 


NC HHC count ncav = 3 per ring

+ 4 in common

NC HHC frequency frf = 197 MHz

NC HHC harmonic nh = 2520

SC HHC impedance per cell R0=Q0 = 46.1 


SC HHC count ncav = 2 per ring

SC HHC frequency frf = 56 MHz

SC HHC harmonic nh = 720
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