IR detector for machine protection during HOM damper quench Brian Sheehy

•Scenario: multipacting causes quench of an area on an HOM damper. Resistive heating then causes a growing hotspot. Want to detune the cavity before melting/deformation occur.

• Look into a couple of end ports to see thermal radiation from the hotspot

•Ilan Ben-Zvi modeled quench propagation in the HOM dampers (*C-A/AP/#358*) and found that detectable IR radiation was produced in ~150 msec, and temperatures rose slowly enough to insert fundamental mode damper before damage occurs

• may also detect cavity quenches before the cryo signature is evident

After 150 msec, peak temperature 735K size 1.4 cm

After 3 seconds, peak temperature <1300K (safe for Niobium) size ~ 4 cm

from Ilan Ben-Zvi's AP note C-A/AP/#358 September 2009

Placement

- Use 2 of the end ports for detector placement
 - 2 o' clock and 8 o' clock positions
- Light from hotspot reflects from cavity wall before exiting

<u>Outline</u>

- Detectors (sensitivity, noise)?
- Expected "useful" thermal radiation
 including temperature distribution, optical properties and detector spectral response
- Throughput: how much of the thermal radiation will get to the detector?
- Integration into the cryostat
- vacuum / cryo issues with the viewport
- implementation program

Detector

Photovoltaic MCT (Hg_{1-x} Cd_x Te)

- bandgap tunable through x
- long wavelength cutoff photovoltaic now available from Teledyne Judson
- wide wavelength range, sensitive over wide temperature range
 photovoltaic: no 1/f noise, no chopping required
- High detectivity (3e10) and responsivity (4 A/W)
- spec' ed at 77K, need to measure performance at 4K

detectivity
$$D^* = \frac{\sqrt{A \times \Delta f}}{NEP} = 3 \times 10^{10} \frac{\text{cm} \cdot \sqrt{\text{Hz}}}{\text{W}}$$

A = det area = 1mm², Δf = bandwidth = 100 Hz
 \Rightarrow NEP = noise effective power = 30 pW

Detector

Indium Antimonide (InSb)

more restricted wavelength range than MCT

 spot must reach higher temperatures (~550K) before detection

•photovoltaic: no 1/f noise, no chopping required

- High detectivity (1e11) and responsivity (3 A/W)
- spec' ed at 77K, need to measure performance at 4K

Combine:

- Temperature distribution of radiator 1.
- Spectral radiance at each temperature 2.

detector response function 3. & integrate over the radiator

 $\approx 110 \,\mathrm{mW}^* \varepsilon$

 $(\varepsilon \equiv \text{emissivity})$

How much light gets to the detector?

for high reflectivity R, approximate the cavity as an integrating sphere

$$\frac{Pout}{Pin} = \frac{RA_{det}}{A_{total} \left[1 - R\left(1 - \frac{A_{ports}}{A_{total}}\right)\right]}$$

Or, consider the solid angle subtended and the reflection losses after 1 bounce and 2L travel, 3 bounces and 4L, 5 bounces and 6L...

- Consider now also that emissivity and reflectivity are related: take $\varepsilon = (1-R)$
- need experimental tests of throughput
 - models are very approximate
 - some uncertainty in reflectivity, Niobium (good) or an oxide of Niobium (bad)?

Niobium, Weaver et al Phys Rev B 7, 4311 (1973)

NbO₂, Gervais *et al* J Phys C 12, 1977 (1979). $\lambda = 10 - 15$ um shaded

38

Integration into cryostat

- detector can be thermally tied to 4K, on the window flange
 - need to verify detector performance and durability under cryogenic stress at 4 K
 - standard detector use is at 77 K
- transimpedance amp can be located outside of cryo environment
 - shield leads
 - might decrease noise if cold
- will incorporate miniature thermal source for test/calibration
- collection optics
 - probably not effective, may create blindspots

miniature thermal source (Helioworks)

Vacuum Window

	cutoff wavelength
	<u>(4-5 mm thick,</u>
Window Material	<u>50% trans.)</u>
ZnSe	19
Sapphire	5.3
ZnS	13
Ge	~21*
GaAs	~15*
BaF2 (CaF2, MgF2)	13 (9,8)

- ZnSe best material over our wavelength range
- mechanical metal seals commercially available
 - brazing is possible
 - leak rate spec is the same (2 \cdot 10 $^{-10}$ cc-atm/sec He) as brazed Sapphire window
 - vendor measurement limited
- There is more confidence in the vacuum/cryo properties of brazed Sapphire windows
 - •plan is to test both
- will make conflat adapter flange to NbTi end flange

VIEWPORT - ZERO PROFILE ZINC SELENIDE (ZnSe) ON CF FLANGES

Related Product:

Optical Probe

Viewport Type: Zinc Selenide

- 304L Stainless Steel CF Flanges
- Leaking Rate <2x10-10 atm cc/sec HE
- 200°C Maximum Bakeout Temperature
- 25°C /min maximum thermal gradient
- Pb Ag Braze Material

MCT + ZnSe vs InSb + Sapphire

.

.

	MCT/ZnSe window	InSb detector/sapphire window			
wavelength range	2 - 12 micron	2 - 5.3 micron			
temp of black body peaked at cutoff λ (K)	242	547			
peak detectivity	∼3 x 10 ¹⁰	~10 ¹¹			
vacuum confidence	must test	high			
dark current after cold vis/uv exposure	• • •				
(flashing)	better	worse			
4.2 K performance spec	must measure	must measure			

Testing/Implementation Program

Vacuum/Cryo tests of ZnSe and Sapphire windows

Warm cavity, LN2 cooled detector:

- check detector and IR source performance
- reflectivity, throughput measurements using 1.3 GHz cavity or large grain gun cavity

Cold (4K) detector:

- physical stress
- detector performance: noise, "flashing"
- measurement in an environment closer to our operational conditions: -cold environment with "hot" source, DC measurement as opposed to warm environment with warmer source, AC measurement.
- optimize the electronics

Cold cavity, cold detector:

- detection threshold test
- how to test/verify the detector for operations and set machine protection thresholds

ID	•	Task Name		Duration	Start	Finish	arter	2n	d Quarter	3rd Quarter	4th Quarter
1		Droject start		aveb 0	Thu 3/10/11	Thu 3/10/11	Feb Ma	ar Ap	or May Jun	Jul Aug Sep	Oct Nov Dec
2		Project start	opents thru to delivery	40 days	Thu 3/10/11	Wed 5/4/11		0/10	_		
3		Procure both windo	ws	40 days	Thu 3/10/11	Wed 5/4/11		-			
4		Procure short wave	detector	40 days	Thu 3/10/11	Wed 5/4/11		i			
5	-	Procure sources		40 days	Thu 3/10/11	Wed 5/4/11		i			
6	-	Procure amplifier		40 days	Thu 3/10/11	Wed 5/4/11		i			
7		All items delivered		0 days	Wed 5/4/11	Wed 5/4/11			5/4		
8									•		
9	1	testing sequence		148 days	Thu 5/5/11	Mon 11/28/11	i I				
10									•		•
11	1	ZnSe & Sapphire	Windows	17 days	Thu 5/5/11	Fri 5/27/11	i i				
12	1	Vacuum test		5 days	Thu 5/5/11	Wed 5/11/11	i l				
13		Thermal cyclin	g test	10 days	Thu 5/12/11	Wed 5/25/11	i I		14		
14		Redo vacuum	test	2 days	Thu 5/26/11	Fri 5/27/11	i I				
15	1			-			1		-		
16		Warm target, LN2	cooled detector	5 days	Thu 5/5/11	Wed 5/11/11	ī I		*		
17	1	Calibrate detector	+ amp response	5 days	Thu 5/12/11	Wed 5/18/11	ī I		<u> </u>		
18	1	Measure detectivity	1	5 days	Thu 5/19/11	Wed 5/25/11	i I		- T.		
19	1	Measure Nb reflect	ivity	5 days	Thu 5/26/11	Wed 6/1/11	ī I		<u> </u>		
20	1	Measure throughpu	It if possible	5 days	Thu 6/2/11	Wed 6/8/11	ī I		- T		
21	1		-				1		-		
22		Procure detectors		40 days	Thu 6/9/11	Wed 8/3/11	ī I				
23	1						1				
24	1	Cold Testing (VTF	2nd Trip)	123 days	Thu 6/9/11	Mon 11/28/11	i l				
25	1	Prepare for V	F cold test	114 days	Thu 6/9/11	Tue 11/15/11	i i		<u> </u>		
26	111	2nd VTF Trip		0 days	Tue 11/15/11	Tue 11/15/11	ī I				11/15
27	1	Cold (4.2 K) ta	irget, cold detector	3 days	Wed 11/16/11	Fri 11/18/11	ī I				5
28	1	Cryo issues w	ith detector (noise, mechanical stress)	3 days	Mon 11/21/11	Wed 11/23/11	ī I				6
29	1	Measure throu	ighput, minimum detectable signal	3 days	Thu 11/24/11	Mon 11/28/11					l l
Project: IR Detector Schedule 030111 Task Split			Milestone Summary	¢ 		External T External I	Fasks Milesto	one 🔶			
			Progress	Project Sum	mary 🖵		Deadline		$\hat{\mathbf{v}}$		
	Page 1										

		InSb & Sapphire	unit price		MCT & LWIR window	unit price		Pursue both	unit price	
detector	4	InSb	\$2,500	\$10,000	HgCdTe	\$2,500	\$10,000	HgCdTe	\$2,500	\$10,000
windows	4	Sapphire	\$600	\$2,400	eg ZnSe	\$795	\$3,180	ZnSe/Sapphire	\$795	\$3,180
Thermal IR sources	6		\$100	\$600		\$100	\$600		\$100	\$600
current pulse driver (est)	2		\$2,500	\$5,000		\$2,500	\$5,000		\$2,500	\$5,000
preamplifier	3		\$1,250	\$3,750		\$1,250	\$3,750		\$1,250	\$3,750
				\$21,750			\$22,530			\$22,530
	0	/hr	\$119	/hr						
			Machine							
			Shop							
Services	Design hours	price	hours	price	materials					
modify 2 adapter flanges	4	\$0	8	\$952	\$0					
mount for detector and source	8	\$0	8	\$952	\$200					
electronics: design and pulse										
driver for thermal IR sources (if										
not commercially available)										

total cost, including redundancy/spares: ~\$25K

Summary

• 2 MCT or InSb detectors will mount on 2 viewports, paired with miniature thermal sources for test purposes

• Cryo/vacuum tests of windows, and detector tests will dictate final detector choice

• tests of detector performance, surface reflectivity and throughput will tell us the absolute detections threshold

• Full cold test planned for second VTF run in Nov 2011

Wavelength, microns

