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Abstract 
 
General attention at this stage of the work was devoted to development of the electron cooling 
model represented by the force vector and the tensor of diffusion coefficients for the real electron 
distribution function. The same model was realized for intrabeam scattering simulation at 
arbitrary shape of the distribution function. 
 
The algorithms for the luminosity calculation and beam-beam effect simulation were improved. 
 
A simplified model for simulation of longitudinal stochastic cooling at RHIC was developed. 
 
Benchmarking of the electron cooling simulation was performed using results of dedicated 
experiments at Fermilab Recycler. In order to provide realistic comparison between simulation 
of antiproton beam dynamics and experiments new models of electron beam with parabolic 
density distribution and density distribution imported from an external file were developed. A 
new model of the ion synchrotron motion at rectangular RF burrier bucket was implemented. 
Results of the Fermilab experiment simulations will be a topic of independent report.  
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1. Local models for IBS and electron cooling  
 
1.1. Overview 
 
Main goal of the local model for IBS process is to simulate the distribution function evolution 
without additional assumption about its shape. Electron cooling application leads to formation of 
bi-Gaussian distribution in the ion beam. For simulation of IBS process in this case the “core-
tail” model is used in BETACOOL now. However, this model includes a few free parameters 
that can not be calculated from the distribution as itself. The local model will give a possibility to 
benchmark the “core-tail” model and provide a choice of its parameters on the basis of the beam 
dynamics simulation. 
 
The local model of the electron cooling is necessary to compare different electron distribution 
from the side of the cooling process efficiency.  
 
To realise the local models for IBS and electron cooling the structure of the beam object in the 
code was modified. The bunch of the particle can be presented in the laboratory or in the particle 
rest frame. Corresponding modules for particle co-ordinate transformation from laboratory frame 
to beam frame and back were introduced. The friction force and diffusion tensor components are 
calculated in the particle rest frame. In the current version of the algorithm a kick of the ion 
momentum due to action of electron cooling is provided in the laboratory frame, kick of the ion 
momentum due to action of IBS – in the beam frame. All the others parts of the algorithms are 
the same. To reduce the simulation time in the case of IBS simulations the simplified optic 
structure of the ion ring is used. The total lattice is reduced to a few optic elements (10 – 20) that 
have the same properties from the side of IBS process.  
 
The new models are based on the statement that intrabeam scattering (and ion scattering on 
electrons) is the local process and the ion interacts efficiently only with relatively small number 
of nearest particles. The particle density in the vicinity of the ion in this case is closed to 
uniform, the friction force and diffusion tensor components can be calculated using well known 
formulae from plasma physics.  
 
In the frame of local algorithm the program finds in the total array of the particle a small local 
array and calculates local density and rms parameters of the particle distribution in this local 
array. The local parameters are used for calculation of the friction and diffusion components. To 
avoid systematic error in local density evaluation the program calculates number of particles 
inside a small cell surrounding the test ion. Dimensions of this cell are calculated from rms 
dimensions of the local array. Such an algorithm permits to adjust the cell dimensions to the 
local density of the particle distribution and provide an accurate calculation in a dense core and 
in tails of the distribution function. 
 
The algorithm includes three parameters: total number of the particles in the array N, number of 
the local particles Nloc and dimensions of the cell used for local density evaluation. 
 
The local particles are found in the beam frame; therefore for RHIC parameters the local array 
has a specific shape. Expected electron bunch length in the laboratory frame is about 1 mm, the 
ion bunch length is between 15 and 30 cm that corresponds in the beam frame to about 1 and 
more than 15 meters. The transverse dimensions of the electron and ion bunches are closed to 
each other in the cooling section and expected to be between 3 and 5 mm. The ion beam 
transverse dimensions in other optic elements are about 1-2 mm. Thus the bunch length is about 
two orders of magnitude larger than the transverse dimensions. Therefore the array of the local 
particle almost coincides with a longitudinal slice inside the bunch. The local rms transverse 
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sizes are close to the global ones, when the rms length of the local array is less than the total 
bunch length by the ratio between total and local particle number. The electron and ion bunches 
has approximately axial symmetry shape in the transverse plane. 
 
To take into account these peculiarities of the particle distribution and provide fast and accurate 
algorithm the following procedure for the local density evaluation is used. The local density is 
calculated as a particle number located inside an elliptical cylinder of the length of  2σs and half-
axis of the cross-section of ασx and ασy divided  by the volume of this cylinder: yxs σσσπα 22 . 
Where σs, σx, σy are the rms longitudinal and transverse dimensions of the local array and α is 
numerical coefficient less than unity. 
 
For benchmarking of the local model an array of electrons can be generated in the program in 
accordance with the following distributions: 
- Gaussian,  
- bi-Gaussian,  
- uniform in transverse plane and Gaussian along the bunch.  
 
A few new procedures was developed for the benchmarking: the program can output local 
density and the friction force components in a given position inside electron bunch, which are 
calculated from the local array or analytically. This permits to adjust parameters of the model, 
such as the particle numbers in global and in local arrays and the cell dimensions, to obtain 
required accuracy of the simulations.  
 
1.2. Friction and diffusion in an array of particles 
 
Calculation of the friction force and diffusion tensor components related with the problem of 
coulomb scattering of a test particle of a mass mt and velocity of V

r
 in an array of Nloc field 

particles of a mass mf and velocities ivr  (Fig. 1.1). 

 
Fig. 1.1. Test particle (black circle) in the local cloud of field particles (colored circles).  

 
Solution of this problem is well known from the plasma physics. At the distribution function of 
the field particles in the velocity space of f(v) the friction force is equal to 
 

 vdvf
U
U

mm
mm

ZZne
t
p

F

tf

tf

ft 3
3

min

max
224

)(ln
4

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−=
Δ

Δ
=

rr
r

ρ
ρπ

 (1.2.1) 

V
r

 

ivr  

jvr  



 5

 
and the diffusion tensor components are 
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Here α, β = x, y, z, the angular brackets mean averaging over the field particles, Zt, Zf are the 
charge numbers of the test and field particle, vVU rrr

−=  is the relative velocity of the test and 
field particle. The minimum and maximum impact parameters are determined as in electron 
cooling simulation. 
 
The distribution function of the field particles in the velocity space is given as a series of δ - 
functions: 
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n – mean local density of the field particles, Nloc – number of the local field particles, Vα is the 
component of the test particle velocity, vj,α - velocity component of j-th field particle, α = x, y, z. 
 
The minimum impact parameter in the Coulomb logarithm is calculated as 
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The dynamic shielding radius value required for the maximum impact parameter determination 
is calculated using rms velocity spread of the field particles. 
 
The components of the diffusion tensor are 
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All the values are calculated in the particle rest frame. In the general case all the components of 
the diffusion tensor have nonzero values.  
 
The presented formulae can be used for electron cooling simulation, when the electron bunch is 
presented as an array of particles, as well as for IBS simulation in the frame of Model Beam 
algorithm. 
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An universal procedures for the friction and diffusion calculation was developed and they is 
under benchmarking now in the frame of electron cooling simulation with a real electron 
distribution and IBS simulations at RHIC parameters. Preliminary results are presented in the 
chapter 1.6. 
 
The local models are based on the assumption that in the small vicinity of the test particle the 
density distribution of the field particle is closed to uniform. The accuracy of the local density 
calculation determines mainly the accuracy of the model. The friction force and diffusion can be 
calculated, for instance, using analytical expressions (1.2.1) and (1.2.2) assuming Gaussian 
distribution of the field particles in the velocity space. 
 
1.3. Local density calculation, accuracy of the model 
 
In the frame of local algorithm the program finds in the total array of the particle a small local 
array and calculates local density and rms parameters of the particle distribution in this local 
array. The local parameters are used for calculation of the friction and diffusion.  
 
The algorithm includes three parameters: total number of the particles in the array N, number of 
the local particles Nloc and dimensions of the cell used for local density evaluation.  
 
One of the main sources of the error in calculations is the accuracy of the local density 
evaluation. To avoid systematic error in local density evaluation the program calculates number 
of particles inside a small cell surrounding the test ion. Dimensions of this cell are calculated 
from rms dimensions of the local array. Such an algorithm permits to adjust the cell dimensions 
to the local density of the particle distribution and provide an accurate calculation in a dense core 
and in tails of the distribution function. 
 
The local particles are found in the beam frame; therefore for RHIC parameters the local array 
has a specific shape. Expected electron bunch length in the laboratory frame is about 1 mm, the 
ion bunch length is between 15 and 30 cm that corresponds in the beam frame to about 1 and 
more than 15 meters. The transverse dimensions of the electron and ion bunches are closed to 
each other in the cooling section and expected to be between 3 and 5 mm. The ion beam 
transverse dimensions in other optic elements are about 1-2 mm. Thus the bunch length is about 
two orders of magnitude larger than the transverse dimensions. Therefore the array of the local 
particle almost coincides with a longitudinal slice inside the bunch. The local rms transverse 
sizes are close to the global ones, when the rms length of the local array is less than the total 
bunch length by the ratio between total and local particle number. The electron and ion bunches 
has approximately axial symmetry shape in the transverse plane. 
 
To take into account these peculiarities of the particle distribution and provide fast and accurate 
algorithm the following procedure for the local density evaluation is used. The local density is 
calculated as a particle number located inside an elliptical cylinder of the length of  2σs and half-
axis of the cross-section of ασx and ασy divided  by the volume of this cylinder:  
 
 yxsV σσσπα 22=  . (1.3.1). 
 
Where σs, σx, σy are the rms longitudinal and transverse dimensions of the local array and α is 
numerical coefficient less than unity.  
 
The ratio between local particle number and the particle number inside the cell can be estimated 
as a ratio between the volume of local array and volume of the cell. The volume of the local 
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array can be estimated assuming uniform distribution along the array and Gaussian distribution 
across it as: 
 
 yxslocV σπσσ 234≈ . (1.3.2) 
 
Thus the local number and the particle number inside the cell are related with each other as 
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The Ncell determines stochastic fluctuations in the density evaluation and for 10% of the 
fluctuation expectation the Ncell has to be about 100. 
 
Systematic error in the local density evaluation can be estimated on example of one dimensional 
Gaussian distribution. Lets assume that the particle array is a random population from the 
Gaussian distribution at variance σ: 
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Evaluation of the local density in the co-ordinate x is based on calculation of the particle number 
Nbox inside a small vicinity a of this co-ordinate and the local density is assumed to be Nbox/2a. 
This algorithm leads to transformation of the initial distribution n(x) to new distribution n/(x), 
that keeps the Gaussian shape, but the variance becomes to be larger (see Fig. 1.2):  
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Fig. 1.2. Initial distribution (solid line) and “smoothed” distribution (dot line) when the 
averaging of the distribution is provided inside interval of 0.5 σ. x is plotted in σ units. 
 
The variance σ/ of the new distribution is approximately equal to 
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222 35.0 a⋅+≈′ σσ . 
 
Relative increase of the distribution width can be estimated from 
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This increase of the distribution width corresponds to systematic error in the local density 
evaluation: the density is underestimated in a center of the distribution and overestimated in tails. 
To keep the systematic error at small value one needs to minimize (a/σ), or in the case of local 
density calculation the parameter α. In one dimensional case the (a/σ) = 0.3 corresponds to 
relative mistake of about 1%.  
 
 
1.4. Simulation of the diffusion processes in the Model Beam algorithm 
 
The values of the friction and diffusion components are used for calculation of the momentum 
components variation. For electron cooling simulation the ion momentum components are 
changed after crossing the cooling section. The IBS process is simulated in each optic element of 
the ring. The model particle momentum variation after crossing an optic element providing a 
diffusion due to some physics process are calculated in accordance with Langevin equation: 
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where ξj are three Gaussian random numbers with unit dispersion. The coefficients Ci,j have to 
be calculated from diffusion tensor coefficients.  
 
In the general case the diffusion tensor components form a diagonal symmetric matrix: 
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and depending on the process some of them can be equal to zero. 
 
In the presence of the diffusion the mean values of the momentum component variation can be 
expressed via diffusion tensor components in accordance with the definition: 
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where triangular brackets mean averaging over the particles.  
 
To find expressions for Ci,j lets multiply the momentum variation for i and j-th  particles: 
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and average this expression over the particles. Taking into account that 
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(δi,j is the Kronecker-Kapelli symbol.) The coefficients Ci,k have to be chosen to obtain the same 
values of momentum variation (1.4.3), that gives the following system of equations: 
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or in the matrix form: 
 
 DCC T = . (1.4.6) 
 
It is a system of 6 non-linear algebraic equations, which has an infinite number of solutions. 
Here we describe more important specific cases and possible way of the system solution in the 
general case. 
 
At diagonal diffusion tensor in the case when the momentum component variations do not 
correlate with each other, the simplest solution is: 
 
 xxx DC ,1, = , yyy DC ,2, = , zzz DC ,3, = , (1.4.7) 
 
all the other coefficients are equal to zero. 
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The case, when the diffusion tensor has one non-zero off-diagonal coefficients was analyzed by 
Zenkevich and Boine-Frankenheim. This solution is necessary for kinetic IBS simulation based 
on Bjorken-Mtingwa theory in the case of zero vertical dispersion in the ring. 
  
In presence of the horizontal and vertical dispersion the analytical expression for the diffusion 
tensor was derived by Venturini. In this case only Dx,y = 0 and the diffusion tensor has a form  
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the solution of the system (1.4.6) can be build by the following way. Total set of the equations 
can be rewritten by components as: 
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Lets assume, that the random number ξ1 correspond to scattering in the horizontal plane, ξ2 – in 
the vertical plane and put 01,2, == yx CC . From the first equation of the system (1.4.9) it follows 
that 03,3, =yx CC . Lets put 03, =xC . In this case 
 
 xxx DC ,1, = . (1.4.10) 

 
From the second equation of (1.4.9) follows  
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Then, for simplicity put 
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From the third equation of (1.4.9): 
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Substituting (1.4.11) and (1.4.13) into the last equation of (1.4.9) we obtain quadratic equation 
about Cz,3: 
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Fixing the sign “plus” in the last expression one can write total set of the coefficients: 
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all the other are equal to zero. Here Det D is the determinant of the matrix D. 
 
In the general case when all the Di,j ≠ 0 the solution can be found as follows. To solve the 
equation (5.38) lets rotate the co-ordinate system around z axis by some angle ϕ that transforms 
the matrix D into the new matrix G having Gxy = 0. The transformation of the matrix coefficients 
is provided in accordance with 
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where U is the following matrix 
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After that the system of equations (1.4.6) can be rewritten as 
 
 UCAGAAT == , . (1.4.18) 
 
The coefficients of the matrix G are determined by the equations: 
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The requirement Gxy = 0 determines the rotation angle φ: 
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πϕ = , in the opposite case 
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In this case the equation (1.4.18) has the same solution (formulae 1.4.15): 
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The coefficients of  the matrix C are calculated from the equation C = U-1A: 
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The formulae (1.4.15) are used in Betacool for Kinetic model of IBS simulations (based on 
analytical expressions for the diffusion tensor components), the formulae (1.4.22) describes the 
Langevin coefficients in the local models of IBS and electron cooling. 
 
1.5. Electron cooling simulation, benchmarking tools, friction models 
 
Properties of numerical algorithm for local simulations were investigated on example of electron 
distribution analysis. 
 
For benchmarking of the local model an array of electrons can be generated in the program in 
accordance with the following distributions: 
- Gaussian,  
- bi-Gaussian,  
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- uniform in transverse plane and Gaussian along the bunch.  
 
A few new procedures was developed for the benchmarking: the program can output local 
density and the friction force components in a given position inside electron bunch, which are 
calculated from the local array or analytically. This permits to adjust parameters of the model, 
such as the particle numbers in global and in local arrays and the cell dimensions, to obtain 
required accuracy of the simulations. 
 
For instance, the array of particles at Gaussian distribution in all degrees of freedom generated 
by the program is analyzed in the Fig. 1.3. The calculated local density is output as a function of 
horizontal and longitudinal co-ordinates at zero value of vertical co-ordinates.  
 

  
 

  
Fig. 1.3. Upper plots is analytical density distribution in linear (left plot) and logarithmic (right 
plot) scales. Lower plots are the same for array of 20000 particles, number of local particles is 
4000, α = 0.5 (number of particles inside cell is about 130 in accordance with estimation (1.3.3)) 
 
For generation of the electron array at different distributions the following visual form was 
developed in the interface (Fig.1.4). 
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Fig. 1.4. The visual form Electron array developed for generation of different test electron 
distributions. 
 
When the option “From file” is chosen the array is loaded from a file. In this case rms parameters 
and the “Number of particle in array” are output parameters. Input parameters of the model are 
“Number of nearest particles” and “Box dimension, sigma”. The real particle number in array is 
output only after start of the program. If the number of nearest particles is large than particle 
number in array the local number will be reduced automatically to the array number. 
 
If the radio button “Gaussian” is chosen, but check boxes “Bi-Gaussian” and “Uniform” are not 
checked: 
 

 
 

the program will generate array of particles by itself. In this case rms parameters of the array and 
“Number of particles in array” are input parameters. The particle distribution over co-ordinates 
and velocities is Gaussian at input rms parameters. 
 
If “Gaussian” is chosen, check boxes “Bi-Gaussian” is checked and “Uniform” is not checked: 
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The program will generate the particle array in accordance with rms parameters and “Core n” 
and “sigma” parameters. The number of particles equal to 
  

“Number of particles in array” * (1 – “Core n”) 
 
will be distributed in accordance with Gaussian low at input rms values. The other particles will 
be distributed in accordance with Gaussian low at rms parameters multiplied by “sigma” 
parameter. 
 
If “Gaussian” is chosen, check boxes “Bi-Gaussian” is not checked and “Uniform” is checked: 

 
 

the program will generate array of the particles with uniform distribution over horizontal and 
vertical co-ordinates inside ±2 multiplied by corresponding rms value. The longitudinal co-
ordinate and all components of the particle velocity will be distributed in accordance with 
Gaussian low at input rms parameters. 
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Number of local particles determines accuracy of the friction force and diffusion calculation. The 
calculations of the force using velocity of the local particles is equivalent to calculation of the 
friction integral by Monte-Carlo method. 
 
To investigate the accuracy of the friction force calculations were foreseen a few possibilities for 
the friction force calculation.  
 
For the friction force calculation in the case of electron array the friction force model “Electron 
array” is used. To calculate the electron density and friction force from co-ordinates and 
velocities of the electrons in the visual form “Toepffer, 3D” the check box “From array” has to 
be checked, the check box “Analytic density” has to be not checked:  
 

 
Fig. 1.5. The visual form Toepffer, 3D developed for input of the local model parameters for the 
friction calculation.   
 
When the check box “Analytic density” is checked the local density of the electrons is calculated 
in accordance with the model of electron beam used for the array generation (Gaussian, bi-
Gaussian or Uniform): 
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When the check box “From array” is not checked the friction force is calculated with the 
formulae for Maxwellian velocity distribution using rms velocity spread of the local array. The 
numbers of integration steps are input in the corresponding edit windows of the visual form. 
At the combination of the check boxes presented below: 
 

 
 

the program will calculate the friction force for analytic density and rms velocity spread of local 
electrons. For the Gaussian array this combination is equivalent to the electron beam model 
“Gaussian bunch”: 

 
Fig. 1.6. Visual form Gaussian bunch used for benchmarking the friction force calculation. 
 
When the check box “From model” in the visual form “Gaussian bunch” is not checked the 
velocity spread of the bunch will be calculated from the angular spread input in the 
corresponding edit windows. In this case the velocity spread can be different in all degrees of 
freedom and the friction force can be calculated using 3D force formula only. For this the force 
model “Electron array” has to be chosen, but the check box “From array” has to be not checked 
(if this box is checked the program will stop the calculations due to mistake). If the check box 
“From model” is not checked the electron rms velocities, temperatures and emitances will be 
calculated from the bunch rms parameters and output into the visual form “Model”: 
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Fig. 1.7. Visual form Model used for input of the parameters for analytical calculation of the 
friction force. 
 
 When the check box “From model” in the visual form “Gaussian bunch” is checked:  

 
 

the friction force will be calculated using the beam parameters from the visual form “Model” 
(Fig. 1.7), the rms angular spread of the bunch from the form “Gaussian bunch” will be ignored. 
In this case one can use for friction force calculation each model of the friction force, for 
instance “Non-magnetized”. 
 
If in the tab sheet “Non-magnetized” the check box “Enable” in the “Undulator” panel is 
checked:  
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Fig. 1.8. Visual form Non-magnetized for input of the undulator parameters. 
 
The undulator parameters will be used for calculation of the minimum impact parameter also in 
the case of friction force model “Electron array”. 
 
For visualization of the electron density in the case of electron model “Electron array” the 
following plot is used: 

 
Fig. 1.9. Visual form Array density for output of the array density distribution. 
 
The density is calculated as function of horizontal and longitudinal co-ordinates inside the 
bunch, the vertical co-ordinate is set to be zero. 
 
Numbers of divisions along horizontal and vertical co-ordinates are input in the tab sheet “Draw 
array”: 
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Fig. 1.10. Visual form Draw array for input of the parameters for plot in Fig. 1.9. 

 
in the edit windows “Hor steps” and “Long steps”. The density is calculated using TBrowse 
component “Draw electron density”. 
 
Local parameters of the electron array – density, mean velocities and the velocity spreads – are 
output taking into account displacement of the electron bunch. The electron bunch position is 
input in the tab sheet “Ebeam shifts” of the “Electron | Cooler” visual form: 
 

 
Fig. 1.11. Visual form Ebeam Shifts used for calculation of the array density in arbitrary 
position. 

 
when the check box “Enable” is checked. The electron bunch position for the local parameters 
calculation and for visualization of the friction force components are input in the edit windows 
“Initial”. 
 
A few examples of the friction force calculation using different models are presented in the 
Fig. 1.12 – 1.13. 
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Fig. 1.12. Friction force as a function of the angle between the ion velocity and the electron 
beam axis calculated using analytical formulae for Gaussian electron array containing 20000 
electrons. Left plot – using global rms parameters of the array, right plot – using rms parameters 
of 200 local electrons. The ion velocity is equal to 3⋅105 m/s. Red line – transverse component of 
the force, blue line – longitudinal one. 
 

 
Fig. 1.13. Friction force as a function of the angle between the ion velocity and the electron 
beam axis calculated using velocities of 200 local electrons. Left and right plot are two random 
realization of the electron bunch. Number of electrons in the array is 20000.  
 
1.6. Local simulations of IBS process 
 
1.6.1. Reduction of the ring optic structure 
 
For IBS simulation the friction and diffusion have to be calculated in each optic element of the 
ring. To keep the calculation time in reasonable range at sufficient particle number the total optic 
structure of the ring can be reduced to a few elements. This procedure has to be done without 
sufficient distortion of the optic structure from the side of its IBS properties.   
 
For instance in the Fig. 1.14 the reduced RHIC lattice structure is presented. Its 15 elements was 
chosen to keep the same IBS growth rates as in the total structure. Results of the IBS simulation 
using Bjorken-Mtingwa model for total and reduced structures are coincide practically 
(Fig. 1.15.). For comparison in the Fig. 1.15 results of the simulations using Kinetic model 
(linear friction & constant diffusion) are presented. As one can see, for distribution closed to 
Gaussian one the Kinetic model provides acceptable accuracy at relatively high calculation 
speed. However the Kinetic model can not be applied at arbitrary ion distribution.  



 22

 
Fig. 1.14. Total RHIC optic structure containing 1900 elements (left) and the reduced structure 
(right) from 15 elements. 
 

 

 
Fig. 1.15. Emittance (upper plot) and momentum spread (lower plot) evolution. Circles 
correspond to analytical IBS calculation for total RHIC optic structure. Black lines – reduced 
structure from Fig. 1.14. Colored lines – results of simulation using Kinetic model. Particle 
number is 4000, step over time is 10 sec. One revolution requires 2.5 seconds of calculation 
using Kinetic model. 
 
1.6.2. Simulations at different structure of the diffusion tensor 
 
RHIC is operated over the transition energy and at usual operation parameters the ion bunch has 
a flattened velocity distribution. In this case the main role in the IBS emittance growth plays Dzz 
component of the diffusion tensor. As one can see from the Fig. 1.15 at Gaussian distribution the 
emittance evolution is predicted with good enough accuracy even at constant diffusion tensor 
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components (independent on the particle co-ordinates and velocity). Any case the friction force 
and other components of the diffusion tensor (as well as their dependence on the particle 
velocity) can be important in prediction of the evolution of the distribution tails in the case of bi-
Gaussian distribution formed at electron cooling application. 
 
Therefore all the stages of the local IBS algorithm were checked step by step at the typical RHIC 
parameters (Fig. 1.16 – 1.19). As it was expected the account of the off-diagonal elements 
(Fig. 1.17 and 1.19) influences very slightly on the results of the simulations. The Model particle 
number in the simulations was chosen to have a calculation time on PC below 5 minutes per one 
revolution in the ring. In this case accuracy of the emittance and momentum spread calculation is 
about 2 – 3 %, which is clearly seen, for instance, in the difference of the initial emittance in the 
Fig. 1.19. 
 

 

 
Fig. 1.16. Beam emittance (upper plot) and momentum spread (lower plot) evolution in time. 
IBS simulations are performed taking into account only diagonal elements of the diffusion 
tensor. Particle number is 2000. Integration step 50 seconds, 50 local particles. One revolution 
recuires 1 min 34 sec. 
 
All the results underestimate slightly the growth rates in comparison with the analytical 
prediction. For the illustration of this fact the horizontal growth rate time-dependence is shown 
in the Fig. 1.18. The growth rates calculated from results of the local simulations predicts very 
well the tendency of the growth rate evolution; however the relative systematic error is almost 
independent on the rate value.  
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Fig. 1.17. Beam emittance (upper plot) and momentum spread (lower plot) evolution in time. 
IBS simulations are performed taking into account two off-diagonal elements of the diffusion 
tensor. Particle number is 2000, local number 100, step over time 50 sec, one revolution is about 
3 min. 
 

 
Fig.1.18. Horizontal heating rate as function of time. Red curve is result of rms dynamics 
simulation. Black line – Model Beam simulations at the parameters of Fig.1.17. 
 
This systematic error originates from the algorithm of the local density calculation (see Chapter 
1.3) and its value is closed to estimation (1.3.6). Correspondingly, to improve the accuracy of the 
calculations one needs to increase the number of the local particles and to decrease of the box 
dimension α. The optimum parameters have to be chosen as a compromise between the accuracy 
and calculation speed.  
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Fig. 1.19. Beam emittance (upper plot) and momentum spread (lower plot) evolution in time. 
IBS simulations are performed with all non-zero elements of the diffusion tensor. 2000 model 
particles, 300 local particles, 15 sec integration step, α = 0.3. One revolution ~ 5 minutes. 
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2. Development of stochastic cooling simulation 
 
First experiments at RHIC with longitudinal stochastic cooling application demonstrated its 
ability to compensate increase of the bunch length due to intrabeam scattering and exclude 
particle losses from the bucket. At these conditions one can expect increase of the emittance 
growth due to intrabeam scattering. To provide realistic simulation of the ion distribution 
function evolution due to common action of the longitudinal stochastic cooling and intrabeam 
scattering the development of the stochastic cooling simulation has been started. 
 
Main peculiarities of the RHIC longitudinal stochastic cooling are sufficient non-linearity of a 
friction force and dependence of the diffusion on synchrotron amplitudes beginning from their 
zero value. The algorithm existing in Betacool presumes linear friction force and diffusion 
independent on the synchrotron amplitude. The development of the algorithm is realizing in 
three stages: 

- at the first stage the model presumed cubic nonlinearity of the friction and constant 
diffusion was realized. Numerical parameters of the model are input into the program and 
used for fitting of experimental results. This model permits to estimate an influence of the 
longitudinal stochastic cooling on the transverse intrabeam growth rates and particle loss 
and simulate luminosity time dependence in the presence of the cooling. However it can 
not predict properties of the stochastic cooling at different parameters of the ion beam. 

- the second stage presumes realization of more realistic model for the friction force 
calculation. 

- and finally the diffusion will be calculated as a function of the particle synchrotron 
amplitude and the distribution shape. 

 
In the frame of Model Beam algorithm the program solves Langevin equation for model particle 
from the particle array. The particle momentum during simulations is changed regularly by 
action of a friction force and randomly by diffusion. In the three dimensional case each 
component of the particle momentum is changed in accordance with the step of integration over 
time of Δt as: 
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where Fi are the components of the friction vector, Ci,j are connected with the diffusion tensor 
components in accordance with the equation: 
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and ξj are independent random numbers distributed in accordance with Gaussian low at unit 
variance. 
 
In the case of longitudinal stochastic cooling we have one dimensional task and the equation 

simplifies. Denoting relative momentum deviation as 
p
pΔ

=δ  one can write 

 
 ξδδ CttFttt Δ+Δ+=Δ+ )()( . (2.1) 
 



 27

If the diffusion due to thermal noise is negligible the coefficient C is determined by the Shottky 
noise diffusion. 
 
Algorithm for realistic calculation of the friction force was proposed by M. Blaskevich. The 
shape of the friction force as a function of the revolution frequency offset can be calculated 
without account of the signal shielding in accordance with: 
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where the frequency offset is given by 
 

p
pΔ

−=Δ ηωω 0  

 
with ω0 = 2π/T0, T0 is the revolution period and η is the momentum slip factor of the ring, h is 
the harmonic number.  
 
In the general case the sum in the (2.2) has to be done over all the harmonic number satisfying 
the condition 
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Here fmin = 5 GHz and fmax = 8 GHz are the minimum and maximum frequencies of the cooling 
system band, frev is the revolution frequency. However the total bandwidth of the RHIC cooling 
system is divided by 15 bands corresponding to the cavity number. Therefore the sum can be 
calculated for central frequency of each band only. Central frequency of the first cavity 
corresponds to the harmonic number equal to 2560. 
 
The form factor G is given by 
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where the time delay 03
2 TTd =  at RHIC cooling system. 

 
Here fmin = 5 GHz and fmax = 8 GHz are the minimum and maximum frequencies of the cooling 
system band, frev is the revolution frequency. However the total bandwidth of the RHIC cooling 
system is divided by 15 bands corresponding to the cavity number. Therefore the sum can be 
calculated for central frequency of each band only. Central frequency of the first cavity 
corresponds to the harmonic number equal to 2560.At RHIC cooling system the time delay 
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To calculate the force (2.4), one can to simplify the expression (2.3): 
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Using (2.5) and Td = 2/3 T0, from (2.4) we have: 
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The results of the calculation are shown on the Fig. 2.1, with Δp/p on x-axis and F on y-axis. 
 

 
Fig. 2.1. The coherent friction force as function of the ion momentum deviation. Two filter 
system. 
 
The formula (2.3) corresponds to the system included two filters in series. For the comparison in 
the Fig. 2.2. the friction force is plotted for the single filter system. In this case the form factor is 
given by 
 
 ( ) ( ) ( )[ ]0exp1exp TihTihhG d ωωω Δ⋅−Δ⋅=Δ⋅ . (2.7) 
 

 
Fig. 2.2. The coherent friction force as function of the ion momentum deviation. Single filter 
system. 
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Diffusion in the case of two filter system calculated in the center of the bunch is shown in the 
Fig. 2.3. 
 

 
Fig. 2.3. The diffusion in the bunch center as function of the ion momentum deviation. Two filter 
system. 
 
To input the parameters of the longitudinal stochastic cooling system the following visual form 
was developed: 
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3. Beam-beam effect and luminosity calculation  
 
3.1. Beam-beam diffusion 
 
When the beam-beam parameter ξi exceeds some threshold value the beam-beam instability is 
excited that leads to diffusional increase of the ion beam emittance. Theory explanation of the 
beam-beam effect given in [T. Katayama et al. “MUSES Conceptual design report” May 1999, 
unpublished] relates this diffusion with a non-linearity of the opposite bunch electric field and 
presence of a noise in the storage ring. The diffusion coefficient D can be expressed from the 
noise relative amplitude u as follows: 
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The noise amplitude can be estimated by fitting of experimental results and it lies in the range 
0.05 – 0.5. 
 
The beam emittance after n revolutions in the ring is calculated as: 
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where ε0 is the initial value of the emittance. The heating rate 
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can be calculated assuming that Dn << 1 (n = Δt/Trev, where Trev is the revolution period): 
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That leads to 
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In the case of different beam cross-sections in horizontal and vertical planes the calculations are 
similar in both planes. For instance the diffusion power in the horizontal plane is calculated as: 
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ξx is the horizontal beam-beam parameter, σx is the horizontal rms bunch size,  σ1x is the rms size 
of the opposite bunch. 
 
The ion momentum variation in the frame of Model Beam algorithm is calculated in accordance 
with: 
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where ξ is the Gaussian random number at unit dispersion, βx is the horizontal beta function in 
the collision point. 
 
This algorithm was implemented into the code. The required modifications in the interface was 
done as it shown in the Fig. 3.1. 
 
 

 
Fig. 3.1. Visual form Collision point, tab sheet Beam-beam for input the noise power. 
 
 
 
3.2. Luminosity calculation for individual ion 
 
For correct calculation of the particle loss in the interaction point the algorithm for luminosity 
calculation for individual ion is necessary. In the current version of the program there are a few 
algorithms for luminosity calculation based on evaluation of local areal density. For 
benchmarking of these algorithms and for fast luminosity calculation in the case of Gaussian or 
bi-Gaussian distribution a new algorithm was developed. Here the luminosity for individual ion 
interacting with a Gaussian bunch is described. In the case of bi-Gaussian distribution the 
luminosity is calculated for a superposition of two Gaussian bunches.  
 
In the frame shown in the Fig. 4.1 the bunch is moving along negative direction of z-axis. The 
bunch velocity is equal u, the ion velocity - v.  
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Fig. 3.2. Geometry of the collision. Collision point is located in the (0,0,0) point. 
 
Particle distribution inside the bunch is given by: 
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The luminosity ia determined as 
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where S is the ion trajectory. Rms dimensions of the bunch are changed in the vicinity of the 
collision point as:  
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where ∗

xβ , ∗
yβ  are the beta-functions in the collision point. The integral (3.2.2) can be rewritten 

in the following form 
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Or at substitution 
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where 
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The integral (3.2.5) is calculated using Gauss-Cristoffel method in accordance with:  
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where xk are the roots of Hermit polinom of N-th order, ck – coefficients, calculated in 
accordance with the formulae: 
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At N = 8 relative mistake in the integral evaluation is less than 10-5 until 6σ inclination of the ion 
co-ordinates from expectation.  


