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Abstract 
 
General attention at this stage of the work was devoted to development of the electron cooling 
model represented by the force vector and the tensor of diffusion coefficients for the real electron 
distribution function. The same model was realized for intrabeam scattering simulation at 
arbitrary shape of the distribution function. 
 
In order to provide realistic comparison between simulation of antiproton beam dynamics and 
experiments at Fermilab Recycler ring a new model of electron beam with parabolic density 
distribution was developed. A new model of the ion synchrotron motion at rectangular RF 
burrier bucket was implemented.  
 
Fast algorithm for calculation of the luminosity for individual ion at Gaussian and bi-Gaussian 
distributions was developed and tested. 
 
A model for simulation of longitudinal stochastic cooling at RHIC is under development. 
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1. Local models for IBS and electron cooling  
 
Main goal of the local model for IBS process is to simulate the distribution function evolution 
without additional assumption about its shape. Electron cooling application leads to formation of 
bi-Gaussian distribution in the ion beam. For simulation of IBS process in this case the “core-
tail” model is used in BETACOOL now. However, this model includes a few free parameters 
that can not be calculated from the distribution as itself. The local model will give a possibility to 
benchmark the “core-tail” model and provide a choice of its parameters on the basis of the beam 
dynamics simulation. 
 
The local model of the electron cooling is necessary to compare different electron distribution 
from the side of the cooling process efficiency.  
 
To realise the local models for IBS and electron cooling the structure of the beam object in the 
code was modified. The bunch of the particle can be presented in the laboratory or in the particle 
rest frame. Corresponding modules for particle co-ordinate transformation from laboratory frame 
to beam frame and back were introduced. The friction force and diffusion tensor components are 
calculated in the particle rest frame. In the current version of the algorithm a kick of the ion 
momentum due to action of electron cooling is provided in the laboratory frame, kick of the ion 
momentum due to action of IBS – in the beam frame. All the others parts of the algorithms are 
the same. To reduce the simulation time in the case of IBS simulations the simplified optic 
structure of the ion ring is used. The total lattice is reduced to a few optic elements (10 – 20) that 
have the same properties from the side of IBS process.  
 
The new models are based on the statement that intrabeam scattering (and ion scattering on 
electrons) is the local process and the ion interacts efficiently only with relatively small number 
of nearest particles. The particle density in the vicinity of the ion in this case is closed to 
uniform, the friction force and diffusion tensor components can be calculated using well known 
formulae from plasma physics.  
 
In the frame of local algorithm the program finds in the total array of the particle a small local 
array and calculates local density and rms parameters of the particle distribution in this local 
array. The local parameters are used for calculation of the friction and diffusion components. To 
avoid systematic error in local density evaluation the program calculates number of particles 
inside a small cell surrounding the test ion. Dimensions of this cell are calculated from rms 
dimensions of the local array. Such an algorithm permits to adjust the cell dimensions to the 
local density of the particle distribution and provide an accurate calculation in a dense core and 
in tails of the distribution function. 
 
The algorithm includes three parameters: total number of the particles in the array N, number of 
the local particles Nloc and dimensions of the cell used for local density evaluation. 
 
The local particles are found in the beam frame; therefore for RHIC parameters the local array 
has a specific shape. Expected electron bunch length in the laboratory frame is about 1 mm, the 
ion bunch length is between 15 and 30 cm that corresponds in the beam frame to about 1 and 
more than 15 meters. The transverse dimensions of the electron and ion bunches are closed to 
each other in the cooling section and expected to be between 3 and 5 mm. The ion beam 
transverse dimensions in other optic elements are about 1-2 mm. Thus the bunch length is about 
two orders of magnitude larger than the transverse dimensions. Therefore the array of the local 
particle almost coincides with a longitudinal slice inside the bunch. The local rms transverse 
sizes are close to the global ones, when the rms length of the local array is less than the total 
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bunch length by the ratio between total and local particle number. The electron and ion bunches 
has approximately axial symmetry shape in the transverse plane. 
 
To take into account these peculiarities of the particle distribution and provide fast and accurate 
algorithm the following procedure for the local density evaluation is used. The local density is 
calculated as a particle number located inside an elliptical cylinder of the length of  2σs and half-
axis of the cross-section of ασx and ασy divided  by the volume of this cylinder: yxs σσσπα 22 . 
Where σs, σx, σy are the rms longitudinal and transverse dimensions of the local array and α is 
numerical coefficient less than unity. 
 
For benchmarking of the local model an array of electrons can be generated in the program in 
accordance with the following distributions: 
- Gaussian,  
- bi-Gaussian,  
- uniform in transverse plane and Gaussian along the bunch.  
 
A few new procedures was developed for the benchmarking: the program can output local 
density and the friction force components in a given position inside electron bunch, which are 
calculated from the local array or analytically. This permits to adjust parameters of the model, 
such as the particle numbers in global and in local arrays and the cell dimensions, to obtain 
required accuracy of the simulations. Results of the code benchmarking will be presented in the 
final report. 
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2. Algorithms for simulations of Fermilab experiments 
 
To provide realistic simulations of electron cooling process in Recycler ring in Fermilab one 
needs to take into account properties of the electron beam and peculiarity of the antiproton 
synchrotron motion at barrier RF bucket application.  
 
In previous simulations the model of electron beam with uniform density distribution in 
transverse cross-section was used. Real electron distribution has a shape closed to parabolic 
function of radial coordinate. To reproduce the parabolic density shape a new model of the 
electron beam was implemented into the program. Input parameters of the model are the beam 
radius a and the beam current Ie. The electron density n as a function of radial coordinate r is 
calculated in accordance with 
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when r < a and equal to zero in opposite case. The central density n0 is calculated from the beam 
current as  
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where v is the electron velocity and e – elementary charge. The linear variation of the transverse 
electron velocity spread across the beam is realized in this model also. 
 
At the Fermilab Resycler a square wave barrier RF bucket is used. Theory of the square wave 
barrier bucket is well known. The RF voltage time dependence and phase trajectories of ions are 
sketched in the Fig. 2.1.When the ion passes through the cavity gap at voltage 0V±  it gains 
(losses) an equal amount of energy ZeV0, i.e. 
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where ΔE is the energy deviation from synchronous one, T0 – revolution period. The ion 
trajectory in the longitudinal phase space (t-t0, ΔE) inside the bucket can be written in the 
following form: 
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where AE is the maximum energy deviation from synchronous energy E0. The phase-space 
trajectory is composed of a straight line in the RF gap region and a parabola in the square RF 
wave region. 
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Fig. 2.1. RF voltage and particle trajectories in the longitudinal phase plane at square wave 
barrier-bucket. V0 is the voltage height, T1 is the pulse width, T2 is the gap duration. 
 
To implement the Barrier Bucket simulation into BETACOOL code the equation of the 

synchrotron motion was rewritten in the phase plane (s-s0, 
p
pΔ

=δ ). The equation is 
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at the part of the trajectory 1 (Fig. 2.1), and 
 

 

( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

−=

=
−

0

0

0

Cp
ZeV

dt
d

c
dt

ssd

δ

δβη
 (2.6) 

 
at the part 2. Here δA is the amplitude of the momentum deviation, C is the ring circumference, 
p0 – synchronous momentum.  
 
The motion equations have an analytical solution in both parts of the phase trajectory. On the 
basis of the analytical solution the procedures for generation of a particle array matched with the 
RF shape, for change of the particle coordinates during synchrotron motion and for generation of 
new particle after the particle loss were prepared. The algorithm of the barrier bucket simulation 
is under benchmarking now. Detailed description and results of simulations will be presented in 
the final report. 
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3. Development of stochastic cooling simulation 
 
First experiments at RHIC with longitudinal stochastic cooling application demonstrated its 
ability to compensate increase of the bunch length due to intrabeam scattering and exclude 
particle losses from the bucket. At these conditions one can expect increase of the emittance 
growth due to intrabeam scattering. To provide realistic simulation of the ion distribution 
function evolution due to common action of the longitudinal stochastic cooling and intrabeam 
scattering the development of the stochastic cooling simulation has been started. 
 
Main peculiarities of the RHIC longitudinal stochastic cooling are sufficient non-linearity of a 
friction force and dependence of the diffusion on synchrotron amplitudes beginning from their 
zero value. The algorithm existing in Betacool presumes linear friction force and diffusion 
independent on the synchrotron amplitude. The development of the algorithm is realizing in 
three stages: 

- at the first stage the model presumed cubic nonlinearity of the friction and constant 
diffusion was realized. Numerical parameters of the model are input into the program and 
used for fitting of experimental results. This model permits to estimate an influence of the 
longitudinal stochastic cooling on the transverse intrabeam growth rates and particle loss 
and simulate luminosity time dependence in the presence of the cooling. However it can 
not predict properties of the stochastic cooling at different parameters of the ion beam. 

- the second stage presumes realization of more realistic model for the friction force 
calculation. 

- and finally the diffusion will be calculated as a function of the particle synchrotron 
amplitude and the distribution shape. 

 
In the frame of Model Beam algorithm the program solves Langevin equation for model particle 
from the particle array. The particle momentum during simulations is changed regularly by 
action of a friction force and randomly by diffusion. In the three dimensional case each 
component of the particle momentum is changed in accordance with the step of integration over 
time of Δt as: 
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where Fi are the components of the friction vector, Ci,j are connected with the diffusion tensor 
components in accordance with the equation: 
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and ξj are independent random numbers distributed in accordance with Gaussian low at unit 
variance. 
 
In the case of longitudinal stochastic cooling we have one dimensional task and the equation 

simplifies. Denoting relative momentum deviation as 
p
pΔ

=δ  one can write 

 
 ξδδ CttFttt Δ+Δ+=Δ+ )()( . (3.1) 
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If the diffusion due to thermal noise is negligible the coefficient C is determined by the Shottky 
noise diffusion. 
 
In usual stochastic cooling the friction is a linear function of momentum deviation, and in the 
present algorithm for the stochastic cooling simulation in Betacool it is calculated as: 
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where τ0 is so called “single-particle” cooling time. The “single particle” cooling time τ0 is given 
by 
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factor of the order of unit which is determined from the loop length of the longitudinal 
electrodes, np,k is the number of lambda quarter loops in pickup and kicker, GA is the linear gain 
of the system from pickup to kicker.  
 
At given parameters of the cooling system and storage ring this value does not depend on the 
particle number and particle distribution function and is a linear unction of the gain. If this 
correct for arbitrary design of the cooling system the cooling time can be expressed in term of 
relative gain g 
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where Cτ  is some constant determined by the system design. To take into account cubic 
nonlinearity of the friction force in the RHIC cooling system the action of the friction force can 
be calculated as: 
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The coefficients α and β are determined by the system design. 
 
In existing version of the algorithm the coefficient C in the equation (3.1) related with the 
Shottky noise power is calculated as the function of the particle number N and rms momentum 
spread of the beam σp: 
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The coefficient B is proportional to the gain square: 
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Introducing a constant determined by the system and ring parameters one can write: 
 
 pSch NgCC σ2= . (3.3) 
 
Finally the momentum variation can be expressed as 
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and four constants: Cτ, α, β, and CSch are the parameters of the algorithm that has to be calculated 
with other program or measured in experiment. In the simulations these constants can be used as 
fitting parameters: Cτ at optimum gain determines the cooling time, ratio between Cτ and CSch 
determines the threshold of instability, α and β determine the distribution shape in the 
equilibrium. This algorithm is realized now and its benchmarking is started. 
 
At the next stages of the algorithm development the constants will be calculated from the system 
parameters. 
 
Algorithm for realistic calculation of the friction force was proposed by M. Blaskevich. The 
shape of the friction force as a function of the revolution frequency offset can be calculated 
without account of the signal shielding in accordance with: 
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where the frequency offset is given by 
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with ω0 = 2π/T0, T0 is the revolution period and η is the momentum slip factor of the ring, h is 
the harmonic number.  
 
In the general case the sum in the (3.5) has to be done over all the harmonic number satisfying 
the condition 
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Here fmin = 5 GHz and fmax = 8 GHz are the minimum and maximum frequencies of the cooling 
system band, frev is the revolution frequency. However the total bandwidth of the RHIC cooling 
system is divided by 15 bands corresponding to the cavity number. Therefore the sum can be 
calculated for central frequency of each band only. Central frequency of the first cavity 
corresponds to the harmonic number equal to 2560. 
 
The form factor G is given by 
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4. Luminosity calculation for individual ion  
 
For correct calculation of the particle loss in the interaction point the algorithm for luminosity 
calculation for individual ion is necessary. In the current version of the program there are a few 
algorithms for luminosity calculation based on evaluation of local areal density. For 
benchmarking of these algorithms and for fast luminosity calculation in the case of Gaussian or 
bi-Gaussian distribution a new algorithm was developed. Here the luminosity for individual ion 
interacting with a Gaussian bunch is described. In the case of bi-Gaussian distribution the 
luminosity is calculated for a superposition of two Gaussian bunches.  
 
In the frame shown in the Fig. 4.1 the bunch is moving along negative direction of z-axis. The 
bunch velocity is equal u, the ion velocity - v.  

 
Fig. 4.1. Geometry of the collision. Collision point is located in the (0,0,0) point. 
 
Particle distribution inside the bunch is given by: 
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The luminosity ia determined as 
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where S is the ion trajectory. Rms dimensions of the bunch are changed in the vicinity of the 
collision point as:  
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where ∗
xβ , ∗

yβ  are the beta-functions in the collision point. The integral (4.2) can be rewritten in 
the following form 
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The integral (4.5) is calculated using Gauss-Cristoffel method in accordance with:  
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where xk are the roots of Hermit polinom of N-th order, ck – coefficients, calculated in 
accordance with the formulae: 
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At N = 8 relative mistake in the integral evaluation is less than 10-5 until 6σ inclination of the ion 
co-ordinates from expectation.  


