Photocathode and Laser

A. Burrill and T. Rao

Outline of the talk

Multialkali photocathode development

- Measurements with 1st generation deposition system
- Design of 2nd and third generation system

Laser system

- Requirements
- Commercial availability
- Modifications needed

• Diamond amplifier

- Theoretical analysis
- Gain measurements
- RF testing
- Capsule fabrication
 - Brazing
 - Metallization

Overview

Photocathode Requirements

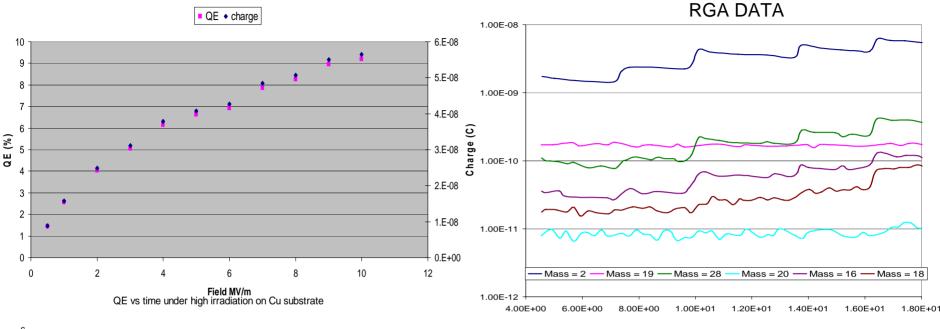
- High Quantum Efficiency
- Visible light irradiated
- Multiple operating conditions
 20 nC/bunch, 9.4 MHz (mag)
 5 nC/bunch, 9.4 MHz (non-mag)
- Robust, long lived
- Capable of assembly into a photocathode secondary emission capsule

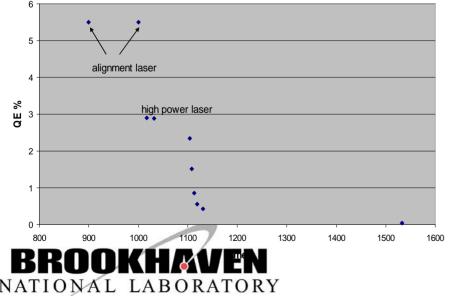
Laser requirements

- High Power (10's of Watts)
- Picosecond pulse duration
- Variable output power
- Spatial and temporal beam shaping

Photocathode Development

CsK₂Sb Deposition System

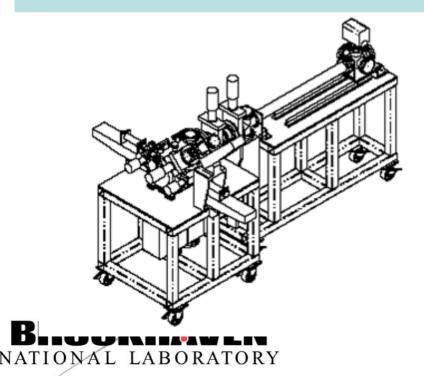

•2-4% QE at 532 nm
•12% QE at 355 nm
•Uniform emission over 1" diameter
•Long life time-months
•High Current density ~250 mA/cm²
•Initial high power laser testing completed
•mA current delivered, limited by space charge



High Power studies

Excimer laser irradiated photocathode 352 nm

2 mA delivered with 3% QE using 532 nm light at 81.25 MHz, 10 ps pulse length- space charge limit

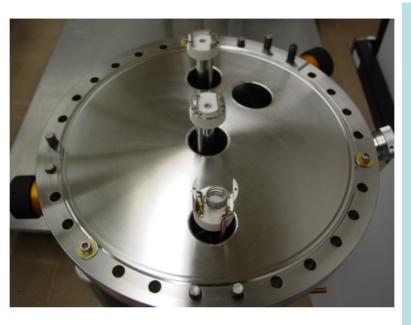

System is too large and cumbersome for our needs

 Packed powder samples cannot be heated quickly

 Time between deposition of different materials too long

Second Generation

- Smaller chamber, Less material, lower outgassing, better vacuum
- Shorter source-substrate distance
- Isolated SAES getter sources, quick to heat, fast photocathode prep
- Co-deposition of cathode materials, better photocathodes
- Metal or transparent substrate



- Third Generation
- System designed to interface to 703 MHz SRF Gun
- Similar technology to 2nd Generation system
- Sample deposition occurs horizontally on fixed arm

NATIONAL LABORATORY

2nd Generation Deposition system

Shorter working distance Pre-made sources Transparent substrate Larger temperature range

Adaptable for capsule fabrication

Photocathode summary

Goal: To develop a high average current multi-alkali photocathode for use in a SRF photoinjector

Tasks accomplished:

- •Uniformity of emission and lifetime studies under low power and high charge density completed successfully.
- •High power test stand studies performed, cathode limitation identified and course of action established

•mA level current achieved

Items to accomplish	Date
Successful transparent photocathode recipe developed	2Q 2006
High power testing, lifetime studies on transparent photocathode	3Q 2006
Design of a secondary emission capsule with multi- alkali photocathode	4Q 2006
Testing of above mentioned capsule	2Q 2007
Assembly and operation of 3 rd generation deposition system	4Q 2006
Recipe development using 3 rd generation system	1Q 2007
High power testing, lifetime studies on 3 rd generation photocathodes	2Q 2007 ectron-coolir

Laser Requirements

>9.4 MHz
>532 nm, 355 nm
>10 ps pulse length

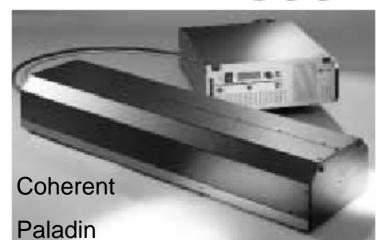
≻10 ps pulse length

Synchronized to master RF clock

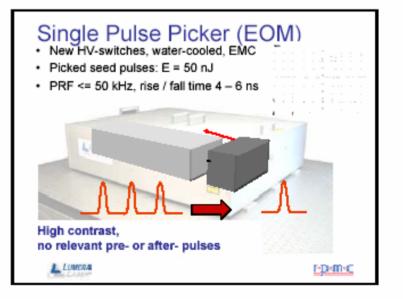
Adjustable output power, oscillator,

amplifier or other combination

≻During ramp up 106 variation in power


Ramping Process

Power Requirement				Method	Process	Change	
Laser Wavelength	CsK ₂ Sb QE	SEY	Desired Current	Laser Power to Cathode	Lower Pump power	power supply control	~ x10
532 nm	3%	0	50 mA	3.9 W	Lower	Variable	x100
532 nm	3%	50	50 mA	.09 W	output	attenuator	
355 nm	10%	0	50 mA	1.8 W	power		
355 nm	10%	50	50 mA	.03 W	Change repetition	Pulse picker	10 ⁴
532 nm	3%	0	200 mA	15.5 W	rate		
532 nm	3%	50	200 mA	0.3 W	Change micropulse	Pulse picker	x10
355 nm	10%	0	200 mA	7 W			
355 nm	10%	50	200 mA	.15 W	duration) electron-(
	•						county

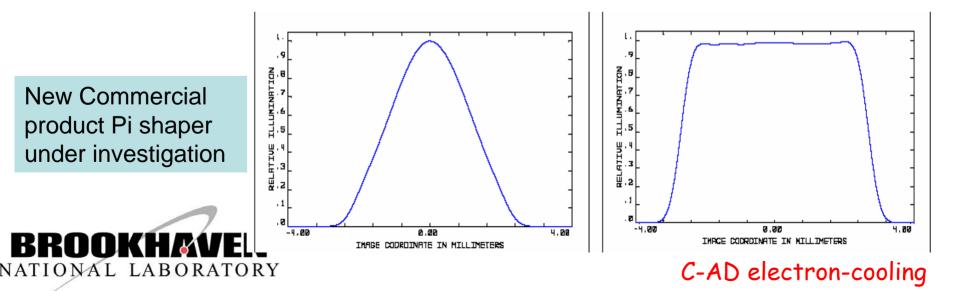

Commercial Products

Sample system specification

Specifications	RAPID
Wavelength	1064 nm
Pulse duration	<15 ps
Average power	2W @ 500 kHz
Pulse energy	30 µJ @10 kHz, 4 µJ @500 kHz
Pulse energy stability	<1% rms at 500 kHz
Pulse energy contrast @500kHz	>200:1
Repetition rate	0-500 kHz, TTL-trigger, pulse on demand
Beam quality M ²	<1.2
Polarization	p, 1000:1
Harmonics options	532 nm (p), 355 nm (s)
Electric supply	85-260 V, 50-60 Hz, 2 kVA
Control unit	W 553 x D 600 x H 612+70 mm ³ ; ~80 kg
Laser head	W 440 x D 888 x H 117 mm ³ , ~46 kg
Beam position	H 67+ mm; IR 127, SHG 97 mm from left

System Specifications 10 W at 1 MHz is now available, 20 W under construction

Multiplex or beam split to get 10 MHz


Basic power requirements can be met, beam shaping will be system specific

rmm; IR 127, SHG 97 mm from left	Paladin 355	
Wavelength	355 nm	
Output Power'		
Paladin 355-4000	>4W	
Paladin 355-8000	>8W	
Repetition Rate	80 MHz ±1 MHz	
Pulse Length	>15 ps @ 1064 nm	
Spatial Mode	TEM _{OO}	
M ²	<1.2	
Beam Diameter	1 mm ±10%	
Beam Divergence	<550 µrad	
Beam Ellipticity	0.9 - 1.1	
Pointing Stability	<20 µrad/°C	
Polarization	linear >100:1, vertical	
Noise (10 Hz - 2 MHz)	<1% (rms)	
Long-term Power Stability	<±2%	

Beam Shaping

- Temporal Shaping:
 - Gaussian- Near normal mode of laser operation
 - Flat Top- Chirp Pulse amplification-Routine for short pulse laser systems
 - Parabolic- Need to investigate
- Spatial:
 - Gaussian- Normal mode of laser operation
 - Flat Top-Aperture clip the edges of Gaussian-Very lossy

Elliptical beam generation

•

- •Generation of elliptical laser beam to meet emittance requirements
- •Technique demonstrated for adaptive laser beam shaping (NIM A **557** (2006), 117)
- •UV illumination of photocathode, 10 Hz repetition rate
- •Tested multiple techniques
 - Microlens array to shape spatial profile
 - Deformable mirror

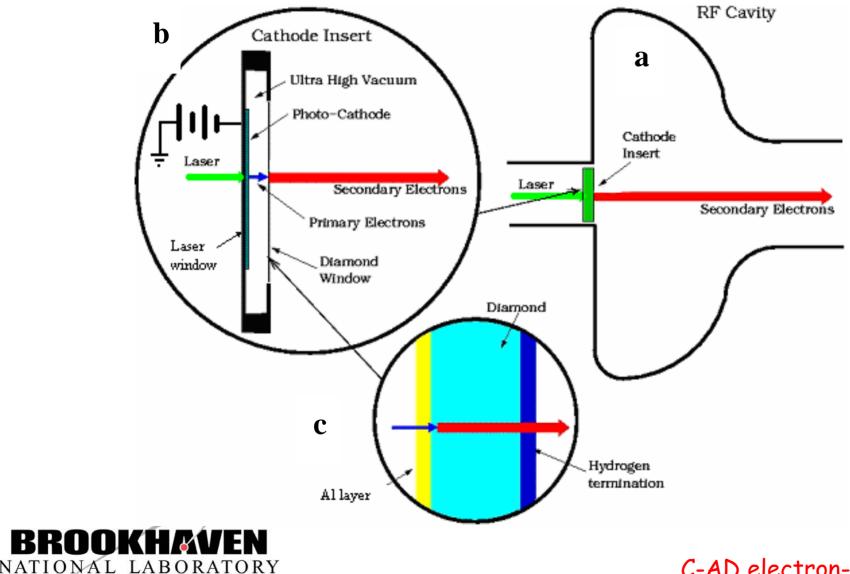
REDEDIKCHAKVEN

NATIONAL LABORATORY

B

- Requires genetic algorithm to adjust mirrors
- Spatial light modulator for temporal shaping
- Fiber bundle for both spatial and temporal shaping
 - Does not produce ideal spot size at cathode

- Suggested methods combine spatial and Temporal pulse shaping (NIM A **557** (2006), 106)
 - Spectral masking of chirped waveforms
 - Temporal stacking of multiple laser beamlets
 - Laser controlled spatial filtering
- To realize 3D ellipsoidal profile combine fiber bundle with adaptive optics to control the laser spatial distributions
- A great deal of work needs to be done to realize this complex laser beam shaping system


Laser summary

- Exact system configuration will be decided upon once photocathode, diamond secondary emitter and magnetized vs. nonmagnetized cooling schemes are fixed, 4Q 2006
- Commercial systems today can deliver necessary power levels
 - Specifics of system will require some customization
- Multiple methods to modify both the output power will have to be installed, **2Q 2007**
- Spatial and Temporal beam shaping will be one of the more complex requirements to implement

Secondary emission capsule concept

When High Charge/Current required

Advantages

- Reduction of the number of primary electrons by the large SEY, i.e. a very low laser power requirement in the photocathode producing the primaries.
- Protection of the cathode from possible contamination from the gun, allowing the use of large quantum efficiency but sensitive cathodes.
- Protection of the gun from possible contamination by the cathode, allowing the use of superconducting gun cavities.
- Production of high average currents, up to ampere class.
- Expected long lifetime, due to the reduced current from the photocathode.

- Issues
 - Transit time and temporal spread
 - Heat generation and dissipation
 - Gain in transmission mode
 - Gain in emission mode
 - Testing in RF gun-JLab
 - Diamond Characterization-NSLS
 - Capsule fabrication
 - Design compatible with Chemical treatment

- Metal diamond interface
- Ohmic contact
- Hydrogenation

Transit time and Temporal spread

Transit time:

Drift velocity $V_d = 10^5(0.2xE+0.55) \sim 2.7x10^5 \text{m/s}$ for E=2 MV/m

E instantaneous electric field in the range of a few MV/m

Time of flight through 10 μ m sample = 110 ps

Temporal Spread:

Random walk broadening during transit:

Number of IMFP steps in $10 \,\mu m$ sample = 800

Number of EMFP steps in 10 μ m sample=1.7x10⁴

RMS broadening is negligible

Space Charge Broadening Negligible as long as field > 2 MV/m

Straggling primary e w/ 10 keV energy ~ 3 ps

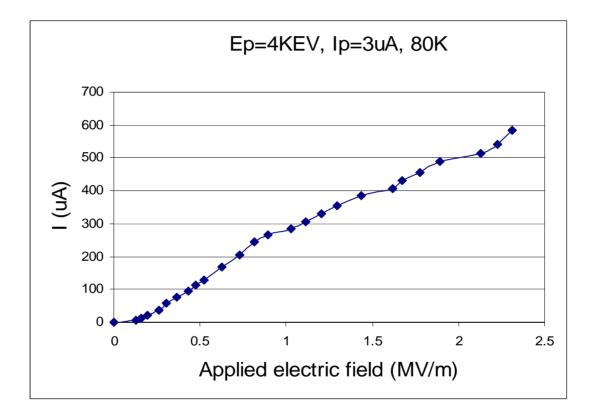
Thermal load in W from different sources

R	10mm	12.5mm	15mm
Primary	6.3	6.3	6.3
Secondary	7.6	7.6	7.6
RF	7.5	20.0	48.6
Replenishment	0.042	0.046	0.054
Total	21.4	33.9	62.5

This heat load can be handled by LN cooling

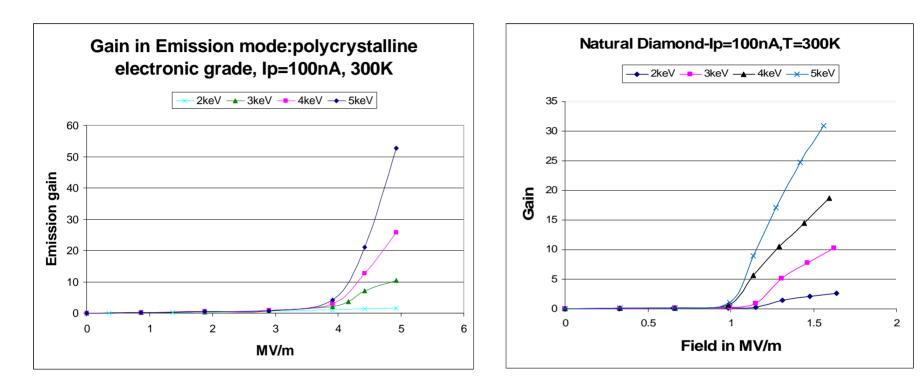
Gain in Transmission Mode From Natural Diamond

Room Temperature


LABORATORY

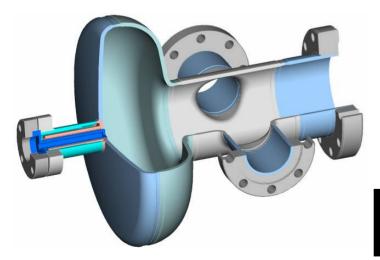
В

NATIONAL


High Current Performance in Transmission Mode

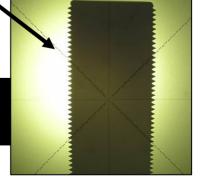
Max. current obtained 0.58 mA, current density .82 A/cm², limited by the power supply

Gain in Emission mode From Hydrogenated samples



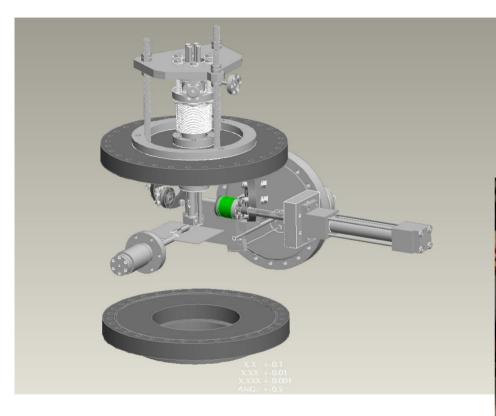
Gain of 50, still increasing W/ field, further investigation underway

Testing in RF gun

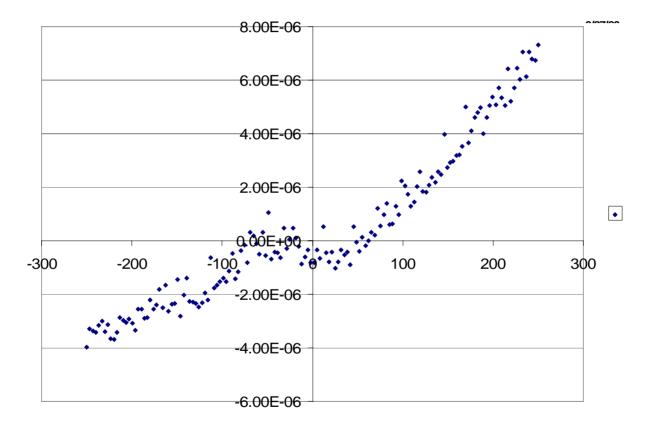


BROOKHAVEN NATIONAL LABORATORY


Diamond can be attached to the insert for RF testing


Oven and Nb-Diamond braze photograph

Metallization System Photograph



Ohmic Contact Measurements

I-V curve of CVD single crystal diamond w/ 150 A° Ti-W Sputtering at Rutgers University

Performance need improvement: charging up- Still under investigation

Diamond Summary

Requirements:

- Understand transmission and emission mode measurements
- Establish hydrogenation method
- Establish Ohmic contact
- Gain in emission mode of >50
- Transit time and temporal spread suitable for SRF photoinjector
- Capsule formation
 - Braze diamond to niobium
 - Attach niobium/diamond to multi-alkali photocathode
 - Test capsule photoemission performance

Accomplishments:

- Transmission and emission measurements carried out
- Hydrogenation of multiple samples
- Gain of >50 obtained in emission mode measurements
- Brazing of Nb to diamond successful Work to be Done:
- Establish and better understand ohmic contact, 2Q 2006
- Install pulsed electron gun and energy analyzer for transit time and temporal spread measurements, 2Q 2006
- Complete capsule formation, **1Q 2007**
- Test capsule in photoinjector, **2Q 2007**

Photocathode, Laser and Diamond Overview

Photocathode

Photocathode R&D on schedule Good initial data obtained Confidence in system established Most key measurements made, only transparent photocathode needs to be proven out

Laser System

Laser System needed for electron cooling have been identified System specifics will be pursued once parameters are fixed Commercial systems are nearly at the level we need

Diamond

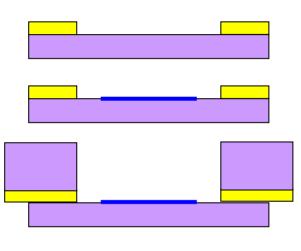
Suitable diamond candidates chosen- natural and high purity electronic quality poly crystalline

High gain seen both in transmission and emission modes from natural diamond. Electronic quality sample will be investigated soon

Testing of diamond in RF cavity is under preparation

Brazing of diamond for capsule fabrication successful- chemical treatment will follow for testing compatibility with diamond processing

Metallization process being tested


New electron gun ordered to test temporal response

Collaborating multiple vendors for sample production and evaluation

Fabrication Sequence

Bottom Half

Top half

Complete Capsule

