Machine Advisory Committee

RHIC Lattice for Cooling

S. Tepikian, J. Kewisch, V. Litvinenko, W. MacKay, T. Roser, D. Trbojevic

- Layout Geometries for RHIC modification
 - Two approaches, Global and Local
 - Normal operations at Star (IP6) and Phenix (IP8) must be preserved
 - Must be flexible for future plans such as: eRhic
- Matching Large β^{*} optics at IP
- Summary

RHIC: Blue and Yellow beams

Reversing IP12 and IP4, MacKay

- Constraints at IP for the eCooling
 - Large β* (≥ 200*m*)
 - Minimize dispersion across the free space (η and η')
 - Minimum of 60m free space required
- Matching the end of the insertion to the arcs
 - Each RHIC IR can be treated independently
- Requires sufficient parameters (quadrupole strengths) to vary
- Optics are Anti-symmetric

- Anti-symmetric triplet
- Large β^{*} ≈ 200m with 80m physical free space available
- Current in power supplies are exceeded (must be investigated)

D. Trbojevic

RHIC Electron Cooling Interaction region

- Symmetric doublets
- Currents in the quadrupoles exceed power supplies
- Large β^{*} ≈ 800m and 80m free space

Time: Tue Dec 30 22:49:40 2003 Last file modify time: Sat Jul 19 16:58:18 2003

Summary

- Requires modification to IR
 - Reuse of existing magnets to reduce cost
- Various geometric layouts are proposed
- Two solutions: $\beta^* \approx 200m$ and $\beta^* \approx 800m$ with 80m physical drift space achievable
 - Quadrupole power supply system must be redesigned

S. Tepikian

Allow for future modifications: RHIC II, eRhic, etc.

