Machine Advisory Committee

RHIC Lattice for Cooling

S. Tepikian, J. Kewisch, V. Litvinenko, W. MacKay, T. Roser, D. Trbojevic

RHIC Lattice for Cooling

- Layout Geometries for RHIC modification
- Two approaches, Global and Local
- Normal operations at Star (IP6) and Phenix (IP8) must be preserved
- Must be flexible for future plans such as: eRhic
- Matching Large β^{*} optics at IP
- Summary

RHIC Lattice for Cooling

RHIC: Blue and Yellow beams
Reversing IP12 and IP4, MacKay

RHIC Lattice for Cooling

Schematic RHIC IR Layout

Shift the crossing point, Kewisch

RHIC Lattice for Cooling

RHIC Lattice for Cooling

- Constraints at IP for the eCooling
- Large $\beta^{*}(\geq 200 m)$
- Minimize dispersion across the free space (η and η ')
- Minimum of 60 m free space required
- Matching the end of the insertion to the arcs
- Each RHIC IR can be treated independently
- Requires sufficient parameters (quadrupole strengths) to vary
- Optics are Anti-symmetric

RHIC Lattice for Cooling

- Anti-symmetric triplet
- Large $\beta^{*} \approx 200 m$ with 80 m physical free space available
- Current in power supplies are exceeded (must be investigated)

RHIC Lattice for Cooling

D. Trbojevic

RHIC Electron Cooling Interaction region

- Symmetric doublets
- Currents in the quadrupoles exceed power supplies
- Large $\beta^{*} \approx 800 \mathrm{~m}$ and 80m free space

Time: Tue Dec 30 22:49:40 2003 Last file modify time: Sat Jul 19 16:58:18 2003

Summary

- Requires modification to IR
- Reuse of existing magnets to reduce cost
- Various geometric layouts are proposed
- Two solutions: $\beta^{*} \approx 200 m$ and $\beta^{*} \approx 800 m$ with 80 m physical drift space achievable
- Quadrupole power supply system must be redesigned
- Allow for future modifications: RHIC II, eRhic, etc.

