SRF Cavities for High Current ERLs

Rama Calaga Brookhaven National Lab

January 23, 2006

ecooling@RHIC

- Cooling Au beams at 100 GeV requires \sim 54 MeV e^-
- $\frac{dCooling}{dt} \propto \gamma^{\frac{5}{2}}$
- Low $\epsilon_{x/y/z}$, High Current, and High Bunch Charge
- Replenish e^- every cycle energy recovery linac

<u>Outline</u>

SRF Injector

- Generation of ampere class
 CW beam
- Low $\epsilon_{x/y}$ & $\delta E/E$
- Strong Coupling $Q_{ext} \sim 10^4$
- HOMs & Stability Criteria
- Cathode Issues and Isolation

- Ampere Class LINAC
- HOM Power & Damping
- BBU (state-of-the-art)
- High $Q_{ext} \Rightarrow$ Lorentz force detuning & microphonics
- Q_0 & Gradient

Cavity Design & Fabrication

Cavity Design Criteria

Iris Radius, R_{iris}	8.5 [cm]
Wall Angle, $lpha$	25 [deg]
Equatorial Ellipse, $R = \frac{B}{A}$	1.0
Iris Ellipse, $r = \frac{b}{a}$	1.1
Cav. wall to iris plane, d	2.5 [cm]
Half Cell Length, $L = \frac{\lambda \beta}{A}$	10.65 [cm]
$H = D - (R_{iris} + b + B)^{T}$	4.195 [cm]
Cavity Beta, $\beta = \frac{v}{c}$	1.0

- Freq: 703.75 MHz
 - 25^{th} harmonic of RHIC
 - Lower Loss Factor ($k_{||}$, k_{\perp})
 - CW power sources
 - Chemical treatment
- Five Cells
 - Fewer trapped modes
 - Field sensitivity factor: $\frac{N^2}{k_{cc}}$

Beam Pipe Transition

- Damping HOMs
 - Enlarged BP (KEK, BNL, CORNELL)
 - Flutes (CORNELL)
 - Loop couplers (TESLA, CEBAF)
- Minimize fundamental leakage (< 10 W).
- Minimize FPC kick
 - Enlarged BP (KEK, BNL)
 - Symm. couplers (COR-NELL)
- Cold to warm transition (Counter Flow of He)

HOM Extraction & Damping

Ferrite Absorbers Broadband (300 K)

Loop Couplers Resonant Ciruit (2 K)

 $\delta_t = \frac{\int (E_y + cB_x) dz}{\int E_z dz}$

	δ_t	Kick
Single Coupler	$(0.3 - 1.2i) imes 10^{-3}$	pprox 0.27 mrad
Symmetric Couplers	$(5.3 - 8.7i) imes 10^{-5} \ mm^{-1}$	$pprox$ 48 μ rad

BNL High Current Cavity

Main Parameters:

Main Parameters:		
Frequency RHIC Harmonic	703.75 [MHz] 25	
Number of cells	5	
Active cavity length	1.52 [m]	
Iris Diameter	17 [cm]	
Beam Pipe Diameter	24 [cm]	
$G(\Omega)$	225	
R/Q	403.5 [Ω]	
<i>Q</i> BCS @ 2K	$4.5 imes 10^{10}$	
Q_{ext}	$3 imes 10^6$	
E_p/E_a	1.97	
$\mid H_p/E_a$	5.78 [<i>mT</i> / <i>MV</i> / <i>m</i>]	
cell to cell coupling	3%	
Sensitivity Factor $(\frac{N^2}{\beta})$	833	
Field Flatness	96.5 %	
Lorentz Detuning Coeff	1.2 [Hz/MV/m]	
Lowest Mech. Resonance	96 [MHz]	0.2 -
$k_{ } \left(\sigma_z - 1 cm ight)$	1.1 [V/pC]	
$k_{\perp}~(\sigma_z-1cm)$	3.1 [V/pC/m]	
HOM Power (10-20 nC)	0.5-2.3 [kW]	z [m]

Superfish Meas

1.6

1.8

Cu Prototype & Nb Cavity

- Two Cu prototypes fabricated
- Measurement of fundamental and higher order modes completed
- Measurement of 2nd cavity for statistics under progress
- Superstructure transition section to be developed and tested

- The cavity, BCP tooling and HPR system fabricated
- To be shipped to JLAB Jan 26th, 2006
- Back to BNL May 18th, 2006
- Cryostat assembly and cold testing BNL in Sept. 2006

HOMs: Simulation & Measurements

Frequency Domain

<u>Time Domain</u>

Multibunch Beam BreakUp

<u>TDBBU</u>

Threshold Current > 2 Amps BNL eCooling Configuration - 4 Cavities - 54 MeV (Numerical Codes from JLAB)

BNL 1/2 Cell Gun ERL Prototype

SRF Gun Design

Some Comparisons			
Shape	r/Q [Ω]	E_p/E_a	$B_p/E_a \left[\frac{mT}{(MV/m)}\right]$
Design 1	101	1.14	2.73
Design 2	105	1.39	2.97
Design 3	103	1.20	2.81
Design 4	112	1.33	2.69
Design 5	95	1.42	2.96
Design 6	92	1.42	2.87

Design 5	Right Cell
Frequency	703.75 MHz
Iris Radius, R_{iris}	5.0 cm
Wall Angle α	6 5°
Equatorial Ellipse, $R = \frac{B}{A}$	1.1
Iris Ellipse, $r = \frac{b}{c}$	1.2
Cav. wall to iris plane,	1.0 cm
Active cavity Length, L	8.5 cm
Center to equator end	18.95 cm
Avg. Beta, $< \beta = \frac{v}{c} >$	0.587

Average HOM Losses

$$P_{HOM} = k_{||}Q_bI_b$$

For
$$\beta = 1$$
:

$$k_{||} = \frac{1}{\pi} \int_{0}^{\infty} ReZ_{||}(\omega) d\omega$$

For
$$\beta < 1$$
:

$$k(\beta, \sigma) = \sum_{n=1}^{n} \frac{\omega R_s(\beta)}{2Q_n} e^{-(\frac{\omega\sigma}{\beta c})^2}$$

Avg. Power \sim 175 W ($Q_b = 5 \text{ nC}, I_b = 50 \text{ mA}$)

Cathode Recess

- HOM Damping $\ensuremath{\textcircled{}^\circ}$
- FPC Coupling (field level $<10^2$ \rightarrow 10 cm away)
- Mechanical Design (manufacturing, valves etc..) ③

Impedance Spectrum & Laser Stability

Coupling Fundamental Power

- Couple strongly: $Q_{ext} \sim 5 \times 10^4$
- Coupler kicks
- Reduce wakefields
- Engineering, alignments, etc..

FPC Optimization

Coupler Kicks

$$\delta_t = \frac{\int (E_y + v_z B_x) dz}{\int E_z dz}$$
$$d\epsilon_n = \sigma_t \frac{2\pi\sigma_z}{\lambda_{RF}} \frac{eV_{acc}}{E_0} |\mathsf{R}e(\delta_t)\sin\phi_0 + \mathrm{I}m(\delta_t)\cos\phi_0|$$

Asymmetry	Kick	$d\epsilon_n/\epsilon_n$
Tip Penetration	$(-6.1 - 5.0i) \times 10^{-5} mm^{-1}$	< 3%
Phase Offset	$(8.4 - 5.9i) \times 10^{-5} \ deg^{-1}$	< 3%

eCooling 1.5 Cell Gun

- Optimize Iris Radius
 - $f_{HOMs} \& f_{cut-off}$
 - Trapped Modes
- Beam pipe transition
 - HOM damping
 - FPC Coupling
- Optimize $L_1 \& L_2$
 - Energy Vs. Phase Slope
 - Longitidinal Emittance
 - Transverse Emittance
- Optimize cavity ellipses
 - Peak fields, R/Q, etc...

- Final design review (1/2 Cell) Dec 14th, 2005
- SRF gun shape and FPC Coupler finalized
- Fabrication of prototype and Nb cavity underway

Extra Slides

Design Criteria

- $\frac{E_{peak}}{E_{acc}}$ ()), $\frac{H_{peak}}{E_{acc}}$ ())
- $P_{cav} \propto \frac{Rs}{(R/Q)G} (\downarrow)$ - $R_s \propto \omega^2 (R_s = R_{BCS} + R_{res})$ - $\frac{R}{Q}G \propto const. (dim. \propto \omega)$
- Field sensitivity: $a \propto rac{N^2}{k_{cc}}$ ())

• $P_{avg} = 2k_{||}IQ$

•
$$k_{||} \propto rac{1}{\mathrm{R}_{\mathrm{iris}}} \sqrt{rac{d}{\sigma_z}} \sqrt{N_0}$$

•
$$k_{\perp} \propto rac{1}{R_{iris}^3} \sqrt{d\sigma_z N_c}$$

Cavity Design

Cavity Comparisons

Par	BNL(HC)	CEBAF(HG)	TESLA(HG)
Freq. [MHz]	703.75	1497	1300
$\frac{R}{Q} * G \left[\Omega^2\right]$	$9 imes 10^4$	$2.1 imes 10^5$	$2.8 imes 10^5$
E_p/E_a	1.97	1.96	1.98
$\dot{H_p}/E_a \left[mT/MV/m ight]$	5.78	4.15	4.15
k_{cc}	3%	1.89%	1.87%
N_{cells}	5	7	9
$\frac{N^2}{\beta k_{cc}}$	$8.3 imes 10^2$	$2.6 imes 10^3$	$4.1 imes 10^3$
Lorentz Det Coeff $[Hz/(MV/m)^2]$	12 (UnStiff)	2	1
$k_{\parallel} (\sigma_z - 1mm) [V/pC]$	4.25	10.71	13.14
k_{\perp} $(\sigma_z - 1mm)$ [V/pC/m]	0.1	2.24	2.07
Q_{ext} (Dipole)	$10^2 - 10^4$	$10^{3} - 10^{6}$	$10^{3} - 10^{7}$

Design Criteria: Trapped Modes

Frequency Difference

