RHIC Operation and Plans for Upgrades

Wolfram Fischer

C-AD Machine Advisory Committee Meeting 10 March 2004

- 1. Challenges for RHIC operation
- 2. Enhanced luminosity goals
- 3. Run-4 statistics
- 4. Luminosity limitations
- 5. Summary

1. More flexibility than at other hadron colliders

- Variation in particle species, also asymmetric \rightarrow So far Au+Au, d+Au, p+p, others possible
- Variation in energy
 - \rightarrow Au+Au at 10, 66, 100 GeV/u
 - $\rightarrow p\uparrow +p\uparrow$ at 100 GeV (250 GeV planned in year after next)
- Variation in lattice
 - \rightarrow Low $\beta *$ in most cases (1-3 m)
 - \rightarrow Large β * for small angle scattering experiments (>10 m)
 - \rightarrow Polarity change in large experimental magnets about every 2 weeks
- 2. Four experiments (2 large, 2 small), different preferences
 - Need to avoid that any one experiment becomes bottleneck
- 3. Short runs (~30 weeks/year), with multiple modes
 - Significant amount of set-up time required
- 4. Short luminosity lifetime with heavy ions (~ few hours)
 - Fast refills essential

3

Heavy ion and polarized proton program until 2008:

Heavy Ions	Physics Data Goals for Experiments	
1.	A 200 GeV Au Au run (>300 µb ⁻¹) in 2004 to follow-up on high p _T results,	
	and get the first sizeable sample of J/ψ .	– current Run
2.	Energy scan run:	
	Au Au at 1 or 2 lower energies. 50-100 µb ⁻¹ total	
3.	Species scan run:	
	1 - 2 lighter ions at 200 GeV. 3-6 nb ⁻¹ total	
4.	A long Au Au run at 200 GeV in 2007 or 2008, with upgraded detector	
	capability for open charm and particle i.d. at high $p_T (\geq 2000 \ \mu b^{-1})$	
Polarized Protons		
1.	15-20 weeks of "development" in 2004 - 2005 (this would include physics	
	data, but is required primarily to get the luminosity and polarization up to	
	required levels).	
2.	Full-capability spin data at 200 GeV. ≥150 pb ⁻¹	

Table 1. Minimal running requirements for the period 2004 – 2008: Note that the sample sizes indicated here are for <u>delivered</u> integrated luminosities. The actual recorded data samples used in physics analysis will be smaller by factors of 2-3.

RHIC Planning Group, "Twenty-Year Planning Study for the Relativistic Heavy Ion Collider Facility at Brookhaven National Laboratory", BNL-71881-2003 Informal Report (2003).

Collider performance comparisons

• Enhanced Luminosity Goals

(before e-cooling, about to be reached when RSVP starts, 2008)

- For Au-Au, average per store, 4 IRs $\mathbf{L} = \mathbf{8} \cdot \mathbf{10^{26} cm^{-2} s^{-1}} \text{ at } 100 \text{GeV/u}$

$$4 \times$$
 design
 $2 \times$ achieved

- For $p\uparrow -p\uparrow$ average per store, 2 IRs $\mathbf{L} = \mathbf{6} \cdot \mathbf{10^{31} cm^{-2} s^{-1}}$ at 100GeV $\mathbf{L} = \mathbf{1.5} \cdot \mathbf{10^{32} cm^{-2} s^{-1}}$ at 250GeV with **70% polarization**

 $16 \times$ design $10 \times$ achieved

Achieved parameters

No of bunches	Ions/bunch [10 ⁹]	β* [m]	Emittance [µm]	$\mathcal{L}_{\text{peak}}$ [cm ⁻² s ⁻¹]	$\mathcal{L}_{\text{store ave}}$ [cm ⁻² s ⁻¹]	L _{week}
45	1.1	1	15-40	15×10^{26}	5×10^{26}	169 µb ⁻¹
55	110/0.7	1	15	12×10^{28}	3×10^{28}	4.5 nb ⁻¹
55	70	1	20-30	6×10 ³⁰	3×10^{30}	0.6 pb ⁻¹
56	1	2	15-40	9×10^{26}	2×10^{26}	50 µb ⁻¹
56	100	2	20	5×10^{30}	4×10^{30}	1.2 pb ⁻¹
112	200	1	20	80×10^{30}	65×10^{3}	20 pb ⁻¹
RHIC time in			ta	rget am experimen	⁰ [best	store or week
	No of bunches 45 55 55 56 112 RHIC time in	No of bunches Ions/bunch [1 0 9] 45 1.1 55 110/0.7 55 70 56 1 56 100 112 200 RHIC time in store	No of bunches Ions/bunch [1 0 9] β * [m] 45 1.1 1 55 110/0.7 1 55 70 1 56 1 2 56 100 2 112 200 1	No of bunches Ions/bunch $[1 0^9]$ β * Emittance $[\mu m]$ 45 1.1 1 15-40 55 110/0.7 1 15 55 70 1 20-30 56 1 2 15-40 56 100 2 20 112 200 1 20	No of bunches Ions/bunch $[1 0^9]$ $\beta *$ [m] Emittance $[\mu m]$ \mathcal{L}_{peak} [cm ⁻² s ⁻¹] 45 1.1 1 15-40 15 × 10 ²⁶ 55 110/0.7 1 15 12 × 10 ²⁸ 55 70 1 20-30 6 × 10 ³⁰ 56 1 2 15-40 9 × 10 ²⁶ 56 100 2 20 5 × 10 ³⁰ 112 200 1 20 80 × 10 ³⁰ RHIC time in store	No of bunches Ions/bunch [1 0 9] $\beta *$ [m] Emittance [μ m] \mathcal{L}_{peak} [cm ⁻² s ⁻¹] $\mathcal{L}_{store ave}$ [cm ⁻² s ⁻¹] 45 1.1 1 15-40 15×10^{26} 5×10^{26} 55 110/0.7 1 15 12×10^{28} 3×10^{28} 55 70 1 20-30 6×10^{30} 3×10^{30} 56 1 2 $15-40$ 9×10^{26} 2×10^{26} 56 100 2 20 5×10^{30} 4×10^{30} 112 200 1 20 80×10^{30} 65×10^3 RHIC time in store 0 [best

- 2 weeks for cool-down, 1 week for warm-up
- For each mode (Au-Au, $p\uparrow -p\uparrow$, d-Au, etc.)
 - 2 weeks of start-up [machine operation 24h/day]
 - 3 weeks of ramp-up

[machine operation 16h/day, experimental set-up 8h/day]

- Continuous luminosity development in production [up to 8h/day, until no further progress is possible]
- 11h/wk beam experiments, 6h/wk maintenance

Assumptions under review:

- \rightarrow Cool-down faster in Run-4
- \rightarrow Needed only 4 weeks for start-up and ramp-up in Run-4
- \rightarrow Potential for another week of saving in the next few years

NATIONAL LABORATORY

1. Bunch intensity increases

 \rightarrow More consistent injector performance (J. Alessi, L. Ahrens, K. Zeno, ...)

 \rightarrow Extra bunch merge in Booster (M. Brennan, M. Blaskiewicz, ...)

2. Collimation

 \rightarrow Secondary collimators in both rings (A. Drees, ...)

3. Shielding

 \rightarrow More shielding at Phenix and Brahms (K. Yip, C. Pearson, ...)

4. Vacuum

 \rightarrow More baking, NEG coated pipes for tests (D. Hseuh, S.Y. Zhang, ...)

5. Reduced failures, recovery and maintenance time

 → Less quenches, less abort kicker pre-fires, no ice balls on current leads, faster down ramps, less corrector failures, AtR cooling, ...
 (M. Bai, G. Ganetis, D. Bruno, L. Ahrens, J. Sandberg, A. Zhang, A. Pendzick, ...)

6. More automation

→Elog entries, injection set-up, orbit correction after every ramp, steering for luminosity maximization, collimator setting, continuous gap cleaning, ... (J. van Zeijts, T. Satogata, W. Fischer, V. Ptitsyn, T. D'Ottavio, A. Drees, ...)

Many improvements, leading to 1-30% more luminosity each

- 1. Vacuum (electron clouds, desorption from beam loss)
 - Vacuum instabilities
 - Experimental background
 - \rightarrow Use optimized bunch patterns
 - \rightarrow Installation of NEG coated pipes in warm regions
- 2. Intrabeam scattering (Au)
 - Leads to luminosity lifetime of a few hours
 - \rightarrow Fast refills needed to increase average luminosity
 - \rightarrow Ultimately need cooling at full energy (stochastic, electron)
- 3. Beam-Beam (p)
 - Limits number of experiments to 2 (out of 4)
 - \rightarrow Possibly new working point
- 4. Instabilities
 - Vulnerable near transition (short bunches, no ξ -jump)
 - \rightarrow Good chromaticity control on ramp, octupoles for transition crossing

 $\mathcal{L} \propto N_{\text{bunch}} N_{\text{Blue}} N_{\text{Yellow}}$

- 1. Maximize bunch intensity N_{Blue}
- Maximize bunch number N_{bunch} for Blue (until Blue vacuum breaks down in sector 8, after rebucketing)
- 3. Determine max Yellow bunch intensity N_{Yellow} for N_{bunch} (unit Yellow vacuum breaks down in sector 4, after rebucketing)
- 4. Reduce bunch number (until Phobos background problem becomes acceptable)
- 5. Adjust bunch number if available bunch intensity changes (store-by-store if needed)
- 6. Optimize store length to maximize average luminosity

\rightarrow Machine runs close to 4 limits simultaneously

[bunch intensity, Blue vacuum, Yellow vacuum, Phobos background]

NATIONAL LABORATORY

- Beam intensities in both rings are limited by vacuum instabilities
- Machine operates as closely as possible at these limits

PHOBOS background increase after rebucketing, drops after minutes to 2 hours

Clear connection between e-cloud and pressure at injection

U. Iriso-Ariz

Estimate for η_e assuming pressure caused by e-cloud: 0.001-0.02 (large error from

17

multiple sources)

[U. Iriso-Ariz et al. "Electron cloud observations at RHIC during FY2003", in preparation.] Wolfram Fischer

- In-situ baking (>95% of 700m/ring warm pipes baked)
 → Occasionally installation schedules too tight
- Solenoids (only against e-clouds)
 → Tested last year, installed near Yellow limit
- NEG coated pipes

 → Installed last shut-down for test purposes
 → Few hundred meters next shut-down, experiments
- Bunch patterns (only against e-clouds)
 - \rightarrow Tested last year
 - \rightarrow Implemented flexible bunch patterns for operation
- Scrubbing
 - \rightarrow Tested last year

(concerns due to electronics in ring – BPMs, experiments)

[Run-2 data]

BROOKHAVEN 19

[Run-2 data]

Au⁷⁹⁺ stores, $\beta *=5m$, $N_{\rm b}=0.25...0.4 \cdot 10^9$ /bunch, storage rf system

- Debunching requires continuous gap cleaning (tune meter)
- Luminosity lifetime requires frequent refills
- Ultimately need cooling at full energy (later presentations)

	ISR	SPS	Tevatron	HERAp	RHIC*	RHIC	LHC
			Run I		pp 2003	pp goal	
Bunches per beam	coasting	3	6	174	55	111	2808
Experiments	6	2	2	2	4	2	4
Parasitic interactions		4	10				120
beam-beam ξ / IP	0.001	0.009	0.008	0.0007	0.004	0.007	0.003
Total bb tune spread, max	0.008	0.028	0.024	0.0014	0.015	0.015	0.010
* Numbers for a 15um and N 0.7.1011 Sources: W. Schnell PAC75 W. Herr. V. Shiltson, C. Monteg						v C Montag	

* Numbers for $\varepsilon_{\rm N}$ =15µm and N_b=0./10

Sources: w. Schnell PAC/5. w. Herr. v. Shiltsev. C. Montag

- Total tune spread from beam-beam in proton operation with $\varepsilon_{\rm N}$ = 20µm (95%) and N_b=2.10¹¹ will be as large as the maximum achieved in any past hadron collider
- Unlike past hadron colliders (weak-strong except ISR), RHIC operates in a strong-strong regime (no operational limit so far)

Quest for a new working point in RHIC

- RHIC design tunes show the least beam-beam effect but are hard during the ramp
- Single particle simulations with beam-beam (Au) at store still show similar performances for the candidates.
- More single and multi-particle simulations are being performed.

Coherent beam-beam modes observable, no operational problem so far

[Simulation: M. Vogt et al., DESY, "Simulations of coherent beam-beam modes at RHIC", EPAC02]

Use of coherence monitor [R. Michnoff] lead to 10-15% higher integrated luminosity. Coherent beam motion observable near transition (and other places)

 \rightarrow Leads to emittance growth and luminosity reduction

 \rightarrow Requires feedback (not yet) or tune spread (earlier beam-beam, now octupoles)

 \rightarrow Large tune spread requires good tune control (tune feedback)

 \rightarrow Tune feedback requires decoupling on ramp

Head-tail: only γ and no ξ jump leads to wrong chromaticity at some point.

Not well understood.

No instabilities found when sign of ξ changed shortly before γ -jump.

M. Blaskiewicz, PAC03

- Enhanced Luminosity Goals (before e-cooling)
 - For Au-Au, average per store $\mathbf{L} = \mathbf{8} \cdot \mathbf{10^{26} cm^{-2} s^{-1}} \text{ at } 100 \text{GeV/u}$
 - For $p\uparrow -p\uparrow$ average per store, 2 IRs L = 6 \cdot 10³¹cm⁻²s⁻¹ at 100GeV L = 1.5 \cdot 10³²cm⁻²s⁻¹ at 250GeV with 70% polarization

```
4 \times design 2 \times achieved
```

 $16 \times$ design $10 \times$ achieved

• Work on luminosity limits

- Vacuum \rightarrow NEG coated warm beam pipes
- Intrabeam scattering \rightarrow fast refills (later cooling)
- Beam-beam \rightarrow possibly new working point
- Instabilities \rightarrow chromaticity control, octupoles, damper

FURTHER MATERIAL

30

NATIONAL LABORATORY

For FY2004	For FY2005	For FY2006	For FY2007	For FY2008	_
Booster low level rf upgrade AGS warm helical snake	RI AGS cold helical snake	HIC injectors	New OPPIS solenoid 2 nd AGS cold helical snake?	EBIS test	Injectors
Collimation system, 1 st half Shielding PHENIX Shielding BRAHMS NEG pipe test (60 m)	RHIC lumin Collimation system, 2 nd half Shielding STAR Shielding PHOBOS NEG pipes (300 m) Solenoids?	nosity and background NEG pipes (400 m) Solenoids?	Lumi	nosity and k	oackground
V ₂ of BPM electronics to alcoves Stochastic cooling 1 st test	All BPM electronics to alcoves 1 alcove outside ring Stochastic cooling 2 nd test	2 alcoves outside ring Stochastic cooling	2 alcoves outside ring	2 alcoves outside ring	
Orbit feed forward (ramp) Decoupling (ramp and store) Gradient error correction AtR cooling Current lead ice balls elimination Corrector PS reliability Gap cleaning Abort kicker pre-fires Faster down-ramps	RH Orbit feed forward (ramp) Decoupling (ramp and store) Gradient error correction Tune feedback (ramp) Chromaticity feedback (ramp) Injection set-up	IC time in store		Ti	me in store

New things to be filled in as we understand the machine better

[T. Roser, W. Fischer, "RHIC Collider Projections (FY2004-FY2008)"]

