Superconducting Solenoid R&D for the Electron Cooler

Animesh Jain

on behalf of

Superconducting Magnet Division Team Brookhaven National Laboratory, Upton, NY 11973

CAD Machine Advisory Committee Meeting, March 10-11, 2004

Solenoid Requirements

- 2 Tesla axial field (upgraded from initial 1 T)
- Up to 30-meter total length (in two sections)
- 100 mm coil ID (~89 mm *cold bore* diameter)
- B_⊥ / B_{axial} ≤1×10⁻⁵ (on-axis straightness):
 >> implies use of a dipole correction system
 >> significantly increases magnet complexity
 >> challenging measurement task
- Quadrupole triplets between solenoids

Solenoid Cross Section

Conceptual Design of Solenoid

Solenoid Coil Characteristics

- 2.29 mm \times 1.52 mm superconductor; Cu:SC = 6.88
- 4 Layers, ~ 390 turns/meter in each layer
- 2.0 Tesla at 1020 A; Conductor limit 1500A (2.9 T)
- Coil ID = 100 mm; Coil OD = 116 mm
- Inductance = 26 mH/meter; Energy = 13.5 kJ/m (2T)
- Peak hoop stress in the coil = $25.3 \text{ MPa} (\sim 3700 \text{ psi})$
- Maximum axial force per turn = $400 \text{ N} (\sim 90 \text{ lbf})$

A prototype coil (~2.5 m long) will be built & tested.

Dipole Correction Coils

- $B_{\perp}/B_z \sim 10^{-5}$ implies a straightness of 10 µm over 1 meter length. This may not be achieved with mechanical alignment alone.
- Winding imperfections are also likely to produce transverse fields on-axis.
- Goal is to achieve as close to 1×10^{-5} as possible with construction tolerances and mechanical adjustment (expect ~ a few $\times 10^{-4}$)
- Correct the remaining errors with an array of ~ 150 mm long, printed circuit dipole correctors.
- Two sets of correctors *per axis* are required.

Printed Circuit Dipole Correctors

□ 2 Layers of 4 oz Copper patterns; 159 mm ID, 150 mm long

 \Box 1.25 ×10⁻³ Tesla central field at 2 A; $\Delta B/B \sim 10^{-3}$ at 50 mm

Mounted on cryogenic heat shield to minimize dissipated power (approx. 190 W/m expected at full power).

Array of 150 mm long Correctors, 160 mm apart

⁷

Simulation to Check Correction Algorithm

Simulation to Check Correction Algorithm

B_y Error data;20 harmonics; Lambda=100mm to 2 meters; 6.5m long solenoid; ~6.6m long corrector 2 families; Dipole06a;b; 150mm patterns. 160mm spacing; 80mm offset for second layer; No extra gaps.

e-Cooler Solenoid Measurement System

- 3-D Hall probe system (expected resolution of $\sim 10^{-3}$ radian)
- Magnetic needle and mirror system (expected resolution of $\sim 10^{-5}$ radian; used at BINP, IUCF, Fermilab)

(Based on C. Crawford et al., FNAL and BINP, Proc. PAC'99, p. 3321-3)

• Array of NMR probes(?) (< 10⁻⁵ rad.; development needed)

Measurement System Schematic

(from George Ganetis, SMD)

Gimbal mount for magnetic needle and mirror

Setup for testing the measurement system

By exciting the dipole correctors at a known strength, the deflection of laser spot can be compared with the expected change in the solenoidal field direction.

The complete measurement system is currently under development.

Shielding: 100 Gauss Boundary at 2 T

¹⁴

Shielding: Effect on Solenoid Field Profile

Shielding: Effect on Solenoid Field Profile

Axial Position (mm)

Quadrupole Triplets Between Solenoids

- A pair of quadrupole triplets is needed in the gaps:
 - >> to prevent electron temperature rise
 - >> to flip magnetization, so that opposing solenoids can be used to avoid x-y coupling
- Typical parameters assumed:
 >> 100 mm magnetic length (same as diameter !)
 >> 10 T/m gradient (1 Tesla integrated gradient)
- Will be produced by direct winding a 6-around-1 superconductor. Operating current ~ 530 A.
- 20 turns/pole, dual layer "Serpentine winding" patterns (recently developed by Brett Parker, BNL).

Quadrupole Corrector Pattern: Layer 1

Animesh Jain; March 10, 2004 18

Quadrupole Corrector Pattern: Layer 2

¹⁹

Quadrupole Corrector: Layers 1 & 2

²⁰

Technical Issues

- Field measurements appear most challenging
 - $\rightarrow~~\sim 1~\mu$ rad resolution required, needs development
 - >> Temperature gradients in the warm bore tube
 - >> Techniques other than "mirror & needle"?
- Simple solenoid, but complex overall system
 - >> Significant engineering task
 - >> Prototype experience will be very valuable
- Quench protection (appears manageable)
 >> Detailed analysis is needed. Work is in progress
- Layout of the quadrupole matching section
 - >> Tracking with realistic field profiles
 - >> Control field leakage from solenoid into quads?
 - >> Work is in progress

Summary

- A conceptual design of the solenoid, and associated correctors, is completed.
- Engineering design of a short prototype is in progress.
- Prototype dipole correctors have been fabricated
- The correction scheme is shown to work using synthetic data.
- Quadrupole correctors will use winding techniques already well developed at BNL.
- Field direction measurement system is under development.

