Energy Recovery Linac

Vladimir N. Litvinenko Collider-Accelerator Department

RHIC

Goals for ERL R&D program

- RHIC II: Au-Au luminosity of 7x10²⁷ cm⁻²sec⁻¹, i.e. approximately 40 times the present design value [1]
- RHIC II: 10⁺- fold boost in \vec{p} - \vec{p} luminosity [1]
- eRHIC: potential for ~10³⁴ cm⁻²sec⁻¹ per nucleon e-p collider [1]

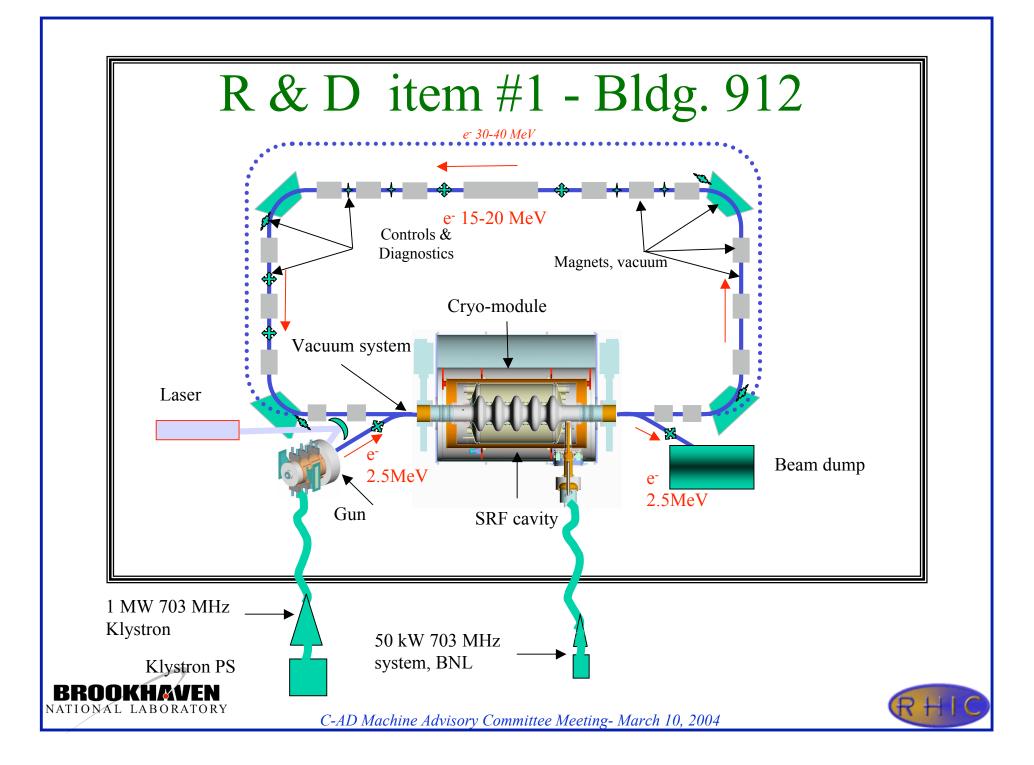
✓ ERLs (2) for Electron beam cooler of the gold ion beams

- ✓ ERL for an FEL-driver of polarized electron gun
 - ✓ 10-20 GeV ERL for eRHIC

✓ ERL prototype to test the concept(s)

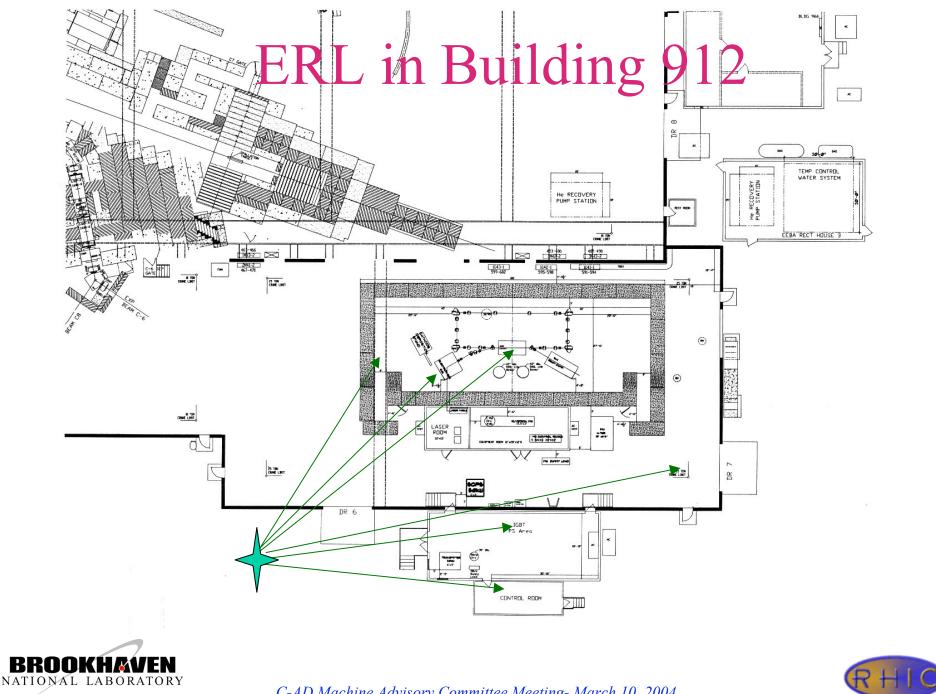
[1] Twenty-Year Planning Study for the Relativistic Heavy Ion Collider Facility at Brookhaven National Laboratory BNL-71881-2003, INFORMAL REPORT, December 31, 2003, Upton, New York

Goals for ERLs e-cooler prototype

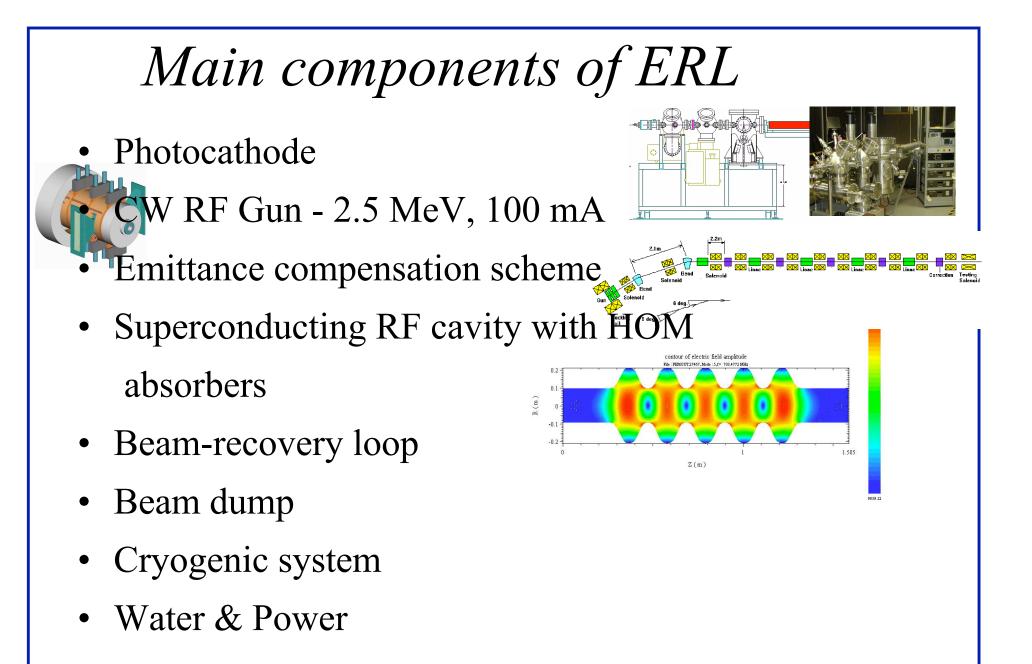

- Generate and accelerate bright $(\varepsilon_n < 50 \ \mu mrad)$ intense (i.e. $100^+ \ mA$) magnetized (i.e. with angular momentum) electron beam to the energy of $54.677 \ MeV$ •
- Cool the ion beam(s)
- Decelerated the electron beam to few MeV and to recover its
 energy back into the RF field

Generate and accelerate bright ($\epsilon_n < 50 \mu mrad$) intense (i.e. $100^+ mA$) electron beam with energy ~ 20-40 MeV

- Decelerated the electron beam to few MeV and to recover its energy back into the RF field
- Test the concepts and stability criteria for very high current ERLs



Beam parameters


ERL	e-Cooler	Prototype			
ERL circumference [m]	~ 120	~ 20			
Number of passes	1	1 to 2			
Beam rep-rate [MHz]	9.38 - 28.15	9.38 - ?			
for tuning		1 Hz – 1 kHz			
Beam energy [MeV]	54.677	20 - 40			
Electrons per bunch (max)	10^{11}	10^{11}			
Normalized emittance [µm rad]	~ 50	~ 50			
RMS Bunch length [m]	0.03 - 0.2	0.05			
Charge per bunch [nC]	10+	10+			
Average e-beam current [A]	0.1+	0.01 - 0.1 +			
Efficiency of energy recovery	99.9%	> 99.95%			
Efficiency of current recovery	99.999%	> 99.9995%			

All key elements of the e-Cooler are parts of the ERL prototype + imagination

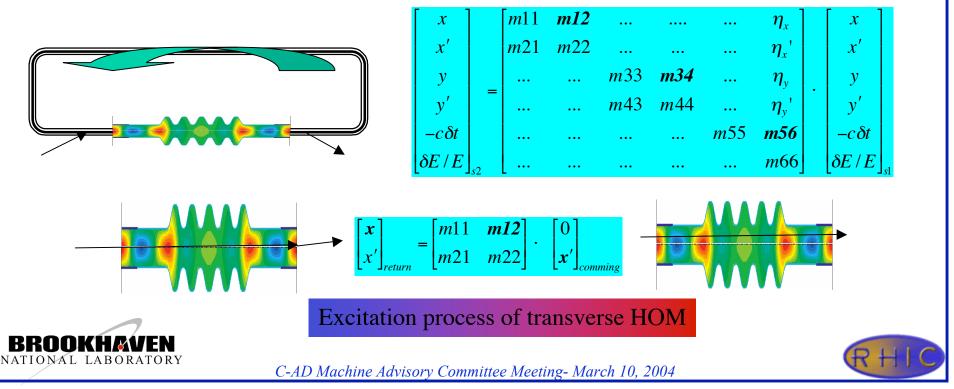
BROOKHAVEN NATIONAL LABORATORY

RHIC

Beam Diagnostics

□ 6-D phase space tomography

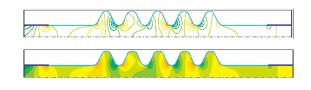
- Two high precision DCCTs: one at the entrance and other at the exit of recirculator, for determining both re-circulated and lost currents
- Beam position monitors
- Fast Log-BMPs for beam break-up studies and the energy feed-back system
- Beam profile monitors both Compton and Synchrotron radiation
- A good dozen of CCD cameras and monitors
- Energy spread measurement system
- 703 MHz lock-in amplifier for tracking the phase of e-beam
- Strip-lines, fast digital scope and
- Stroboscopic system or streak camera with psec resolution

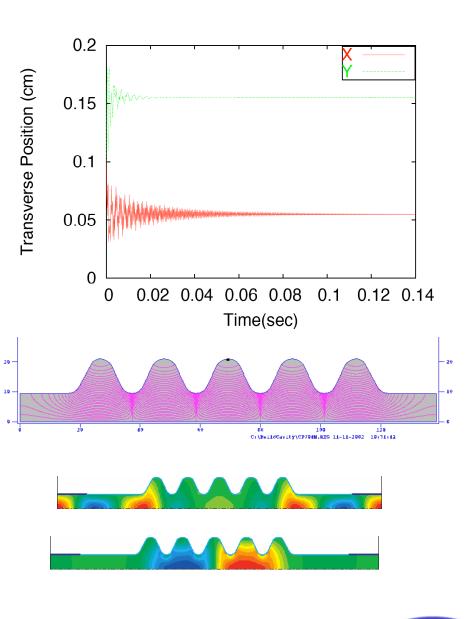


Main features of ERL

- Control of M12 for studying the transverse stability limits in both horizontal and vertical directions
- Control of longitudinal compaction factor for studying longitudinal dynamics

$$m_{12} = \sqrt{\beta_{1x}\beta_{2x}} \sin \Delta \psi_x$$
$$m_{34} = \sqrt{\beta_{1y}\beta_{2y}} \sin \Delta \psi_y$$


$$m_{56} = \int \frac{D}{\rho} ds$$



Stability of ERL

(details in next talk)

- TDBBU, MatTBBU give for ERL with this cavity stability limit: currents up to ~1.8 A (1,800 mA !) for a proper lattice
- We plan to increase M12 in order to measure the TBBU and to compare with predictions by TBBU

Feed-backs

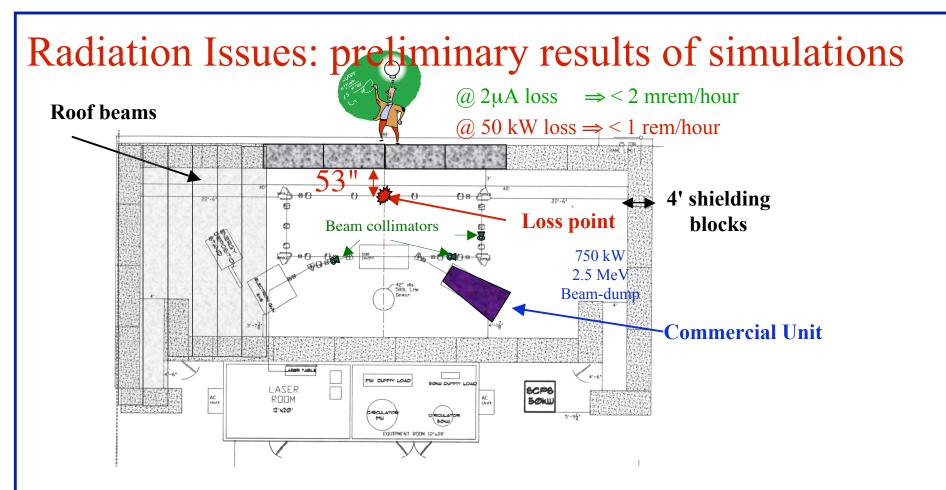
- Required for SC RF
 - phase and
 amplitude feed back
 - Lorentz shift compensation

- Required for the beam stability
 - Beam energy feedback
 - Time jitter feed-back
 - Transverse stability
 feed-back

Modes of operation

- Main mode is CW (MHz)
 - Demonstrating the main e-cooler parameters
 - Very low losses
 - Only non-disruptive beam diagnostics

- Pulse and low rep-rate mode (Hz)
 - First day flag diagnostics
 - Moderate losses allowed
 - Disruptive beam diagnostics
 - Test and start-ups



Radiation Issues:

- Normal Mode CW
 - Hundreds of kWs of 2.5 MeV e-beam in the beam dump
 - Losses of 1-2 μA or less at 20-50 MeV
- Commissioning Mode
 - low rep-rate to not exceed the level of loss in the normal mode
- Worst credible case scenario
 - Potential loss of up-to 50 kW of 20-50 MeV e-beam
 - Potential for concentrated local losses

- CW mode, exaggerated but close to worst realistic case, 54 MeV electrons hit on locally a stainless beam-pipe of radius of 1.5", 53" away from the nearest wall.
- Most of radiation is in the form of electrons, γ -rays and X-rays
- Radiation dose due to photo-nuclear reaction is $\sim 1/1000$ of total dose

Radiation Issues

- Beam dumping at 2.5 MeV
 - Absence of induced radioactivity
 - Simpler commercial absorber
 - Possibility of the full current test of injector

- Radiation protection
- Passive
 - 4' concrete shielding
 - Local absorbers and shielding
- Active
 - Two hard-wired
 Chipmunks
 - Machine feed-backs and interlocks

9.1.11.a General Guideline for C-A Radiation Access-Control System Classification and Application

C-A Class Area Name with	Radiation Level (Allowed potential whole body dose with	Equivalent 30 GeV Large Beam Proton Fluence	Access When Beam Enabled	Sweep/Reset Authority	Area Endosure	C-A Class (Radiation Level)	Minimum ABCS	Purpose of ABCS for Operational Class
Access as per 10 CFR835	access)	a,b,c Rate,				C-A Class without Access	Additional ABCS at this Class Level	Purpose of ABCS for Class
Class I	>500 rad/hr ^a	>3.9x10 ⁹	Absolute Prohibition	MCR Operator or DSC Decisions	Impregnable Enclosure, Dual Interlocked Gates	I Not	HFD Not	Preventing Access or Beam Enablement
Very High Radiation Area -				RSC Designate	Interlocked Gates	Applicable	Applicable	Not Applicable
Class II	<500 rad/hr	<3.9x10 ⁹	Special RCD	RSC Designate	Fully Enclosed ,Dual Interlocked	П	HFD	Controlling Access or Beam Enablement
High Radiation Area-	>50 rem/hr	>1.1x10 ⁸	Approved Procedure		Gates	Ι	Not Specified	Preventing exposure to these levels
Class III	<50 rem/hr	<1.1x10 ⁸	RCD Technician	RSC Designate	Walls or Fences, Interlocked Gates	Ш	HF	Controlling Access or Beam Enablement
High Radiation Area -	>5 rem/hr	>1.1x10 ⁷	Supervision			II I	AF HF	Preventing exposure to these levels Preventing exposure to these levels
Class IV	<5 ren/hr	<1.1x10 ⁷	Individual Authorized by	Individual User May Be	Walls or Fences, Locked Gates	IV	Н	Control Access or Beam Enablement
High Radiation Area	>0.1 rem/la	>2.3x10 ⁵	the RSC	Authorized by the RSC		III II I	AF HF HFD	Preventing exposure to these levels Preventing exposure to these levels Preventing exposure to these levels
Class V	<0.1 rem/hr	<2.3x10 ⁵	Radiation Worker or	When Required,	Fences or, Ropes, Radiation Warning	v	A	Alarm on Excessive Radiation
Radiation Area	>0.005 rem/hr	>1.1x10 ⁴	Visitor Escorted by Radiation Worker	Individual User Authorized by the RSC	Signs Every 40 ft	IV III	A HF	Preventing exposure to these levels Preventing exposure to these levels
Class VI	<0.005 rem/hr	4	GERT Trained	Not Required	Signs, Fences or,	II, I VI	HFD A	Preventing exposure to these levels None
Conrolled Area	-0.00005 ren/kr	<1.1x10 ⁴ >1.1x10 ²	Individual or Escorted Visitor	i voi kequitei	Ropes at Perimeter; Posted at Entrances	V IV III	A HF	Preventing exposure to these levels Preventing exposure to these levels Preventing exposure to these levels
						II, & I	HFD	Preventing exposure to these levels

ABCS - Access/Beam Control System: HFD-Hardwire, fail-safe, dual; HF-Hardwire, fail-safe; AFD-Active, fail-safe, dual; AF-Active, fail-safe, d

a See section 5.5 for procedures for small beam sizes.

b If the absorbed dose rate is 500 rad/hr or greater, the area is named a "Very High Radiation Area" as per 10CFR835. cThis is the fluence rate from a beam of 30-GeV hadrons with size greater than 1000 cm2. It corresponds to the dose rate listed in column two and was obtained by using equations in section 5.4

Milestones of the ERL prototype projects

			2004	2004	2005	2005	2006	2006	2007
Task Name	Start	Finish	H1	H2	H1	H2	H1	H2	H1
e-CX/ERL Project	3-Feb-03	15-Mar-07							Z
Develop the 5-cell RF cavity shape	3-Feb-03	30-Nov-05				+			
Assemble SRF Cavity & Associated Components	3-Oct-05	4-Dec-05							
Electron Gun Procurement	3-Feb-03	6-Jan-06					✦		
Photocathode System Procurement	3-Feb-03	23-Mar-06							
Assemble & Test of RF Gun & Associated Systems	2-Feb-04	4-Apr-06		र्भन्द्र न	art Mart Aar	an a			
Design & Procurement of ERL Vacuum System	10-Jan-05	8-Mar-06					\		
Beam Dump Procurement	1-Oct-03	25-Aug-05			<	>			
Assemble Photocathode, RF Gun, Cavity & Beam I	24-Aug-05	25-Sep-06							
Design & Procurement of ERL Magnetic System	8-Jan-04	2-Nov-06							
ERL installation	26-Sep-06	15-Mar-07							
Building 912 Facility modifications for ERL	3-Feb-03	15-Feb-06				4 			
ERL commissioning	1-Mar-07								

Conclusions

- The prototype ERL will demonstrate the main parameters of the e-beam required for e-cooling
- The prototype will also serve as a test bed for studying issues relevant for very high current ERLs
- Basic scheme is well understood
- Many more calculations and simulations
- Schedule seems to be reasonable

