Stochastic Cooling for RHIC

Team: M. Blaskiewicz, J.M. Brennan, J. Wei, RF and instrumentation groups
Goal: To provide microwave stochastic cooling at a level which will improve integrated luminosity by a significant factor (maybe 2) within the next few years. Confine beam halo when electron cooling arrives.
Current Situation:

Cooling Calculations from a bunched beam FP code

Figure 3: Improvements on a) instantaneous and b) integrated luminosity in RHIC when stochastic cooling is applied.

Figure above from J. Wei CERN/94-03 (1993).
A full turn of delay was assumed.
With $2 / 3$ turn delay things improve (page 5)

Basic considerations

Need 1 to 3.6 kV rms transfer impedance for one kicker $V_{k}^{2}=P_{i n} Z_{t}(f)$
M frequency bands with N kickers per band $V_{b}^{2}=M\left(N V_{k}\right)^{2}$ multi-slot kicker, length $L Z_{t} \propto L^{2}, \Delta f \propto 1 / L \propto 1 / M$
For each kicker $Z_{t}=\hat{Z} M^{2}$
Total power $P_{\text {tot }}=N M P_{\text {in }}$
Total voltage $V_{b}^{2}=N M^{2} \hat{Z} P_{\text {tot }}$
Each kicker should have a different center frequency.

Kicker Impedance for FNAL copy

Need an efficient kicker structure.
The FNAL Antiproton Accumulator has $\gamma=9.5$
Pickup structure D. McGinnis PAC99, p1713
Reciprocity holds
$Z_{t}>500 \Omega$
over
$\Delta f=500 \mathrm{MHz}$
for each kicker

Figure 7. Sum response of the slow wave pickup.

Filter Cooling

8 kickers, 250 Watts/kicker gives 1 kV on beam
Marginal for Palmer cooling
We won't cool the core of the beam.
filter cooling

$$
S(t)=\left(1-e^{-j \omega T_{r e v}}\right)^{n} I_{b} e^{j \omega t}
$$

Needs to be included in the BBFP code.

Pulse Compression

5 ns bunch length
100 ns bunch spacing
Dispersive waveguide between amp and kicker.

$$
T=\frac{T_{\infty}}{\sqrt{1-\left(\omega_{c} / \omega\right)^{2}}}
$$

Waveguide insertion loss limits to a factor -4 pulse compression

Kicker improvements
－Transmission line Model
－ $\mathrm{Zc}=10 \Omega$
$\mathrm{C}(\mathrm{pF}) \mathrm{v} / \mathrm{c} \mathrm{N} \mathrm{L}(\mathrm{cm})$ band（ GHz ）
6
504
4

6	0.90	50	4	4
5	0.95	100	4	6
5	0.95	100	2.5	8

$\mathrm{C} \quad \leftarrow \mathrm{L} \rightarrow$

MAFIA runs

3 cm pipe radius can be reduced transfer impedance is not smooth
More to do

Exploit $\tau_{b}=5 n s$ bunch length

Fourier Series for voltage

$$
V(t)=\sum_{n} A_{n} \sin \left(2 \pi n t / \tau_{b}+\theta_{n}\right)
$$

A_{n} and θ_{n} vary from one bunch to the next 100 ns bunch spacing

20 bands, 10 Watts each, $\mathrm{R} / \mathrm{Q}=200$ Ohm, and $\mathrm{Q}=100$ gives 2 kV rms on the beam

Kicker Calculations courtesy Dave McGinnis

- $4+$ cm aperture
- 20 cm long

