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Abstract

In this paper, I consider an effect of fluctuations of the electron beam current in the designed BNL

electron cooler on the ion beam in RHIC II. Using these estimates, I show that the ”heating” effect of

the electron current noise on the cooled ion beam is negligible if the charge-per-bunch noise is kept below

one per cent.

1 Introduction

The proposed BNL electron cooler will be used to cool ion beams in the RHIC II upgrade. If the charge of
electron bunches fluctuates, the electron beam current noise can produce a ”heating” effect on the cooled ion
beam. Without discussing sources of fluctuations of the charge of electron bunches, I estimate the effect of
the electron beam intensity noise in a linear approximation assuming a broad spectrum of the current noise.

2 Focusing by electron bunches

If the effect of cooling is neglected, the interaction of ions with the electron beam can be described, in
the linear approximation, as additional focusing. To estimate the focusing effect one can assume that
the transverse displacement of ions does not change when ions travel through the cooling section. This
assumption can be justified because the betatron phase advance in the cooling section is of the order of 0.25
radian (L/β = 100m/400m= 0.25) and can be neglected. Additionally, as will be shown later, the focusing
length of the ion-electron interaction is much larger than the length of the cooling section. Therefore, the
interaction of RHIC ions with the electron beam can be considered as a thin focusing lens.

Assuming that electron bunches have a uniform longitudinal distribution of length l and an axially
symmetric transverse distribution, the linear part of the transverse focusing force is given by (in CGS units)

F⊥ = −k ZeQ
γ2σ2l

x (1)

where Z is the charge state of RHIC ions, Q is the charge of electron bunches, e is the elementary charge, γ
is the relativistic factor, σ is the transverse r.m.s. size of electron bunches, and x is the displacement from
the center of the electron beam trajectory. k is a numerical factor depending on the shape of the transverse
distribution and is equal to

k =
2

3
(linear)

k = 1 (gaussian)

for linear and Gaussian distributions respectively.
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The deflection angle produced by the force (1) acting on a relativistic ion over the distance Lc is given
by

x′ =
F⊥Lc
pc

= −kNeZrpLc
γ3σ2Al

x, (2)

where the p is the momentum on ions, c is the speed of light, rp is the classical proton radius, Ne is the
number of electrons in an electron bunch, and A is the atomic weight of ions. Thus, the inverse focusing
length of the effective lens is given by

d =
1

f
= −k rpNeZLc

γ3σ2Al
. (3)

Beam parameters that will be delivered by the electron cooler are given in Table 1.

Table 1: Parameters of the electron beam delivered by the BNL cooler
Parameter Value
γ 107
Charge-per-bunch 5 nC
Emittance (norm.) 5 µm
β-function (cool. section) 400 m
Bunch length (Uniform dist.) 3.4 cm

For the parameters shown in Table 1, fully-stripped gold ions, and a uniform transverse distribution of
electron bunches, the focusing length of the effective electron lens is approximately equal to 6 · 105 m. This
focusing length is much larger than the length of the cooling section that, as discussed above, justifies the
impulse approximation of the interaction of RHIC ions with the electron beam.

3 Amplitude growth induced by charge-per-bunch noise with a

wide spectrum

The focusing produced by the electron beam depends linearly on the charge of electron bunches. Therefore,
the additional focusing δK due to fluctuations of the charge of electron bunches can be added to the equation
of motion as follows:

x′′ +K(s)x = −δK(s)x (4)

with the periodic focusing K(s) and the extra, non-periodic, term

δK =
∑
n

dnδ(s− nC) (5)

where dn is the extra focusing strength of the n−th interaction due to the variation of the number of electron
and δ(s− nC) is the periodic delta-function with the period equal to the RHIC circumference C.

Using the displacement normalized to the absolute value of the Floquet function w, which is related to
the β-function simply as w =

√
β,

y =
x

w
(6)

and the betatron phase ψ as an independent variable instead of s, one can rewrite equation (4) as

ÿ + ν2y = −ν2w4δK(s)y, (7)
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where the dots mean differentiation with respect to the betatron phase d/dψ and ν is the betatron frequency
in RHIC. To clarify the introduced parameterization note that the solution of the homogeneous equation of
motion is given in the new variables by

x = aw cos (νψ + φ), (8)

where a and φ are constants.
As equation (7) suggests, the motion of ions outside the cooling section is identical to the equation of

motion of a free oscillator. The integral of motion of this equation, which is proportional to the squared
amplitude of oscillations, can be found by a trivial integration and is equal to:

ẏ2 + ν2y2 = const = ν2a2. (9)

Because we neglected the phase advance in the cooling section, the additional focusing due to a random
fluctuation of the charge of electron bunches induces only a deflection angle δẏ. This angle variation causes
the amplitude of oscillations to change according to

(ẏ + δẏ)2 + ν2y2 = ν2(a2 + δa2), (10)

yielding the variation of the square of the amplitude

2ẏδẏ + (δẏ)2 = ν2δa2. (11)

A temporal behavior of the amplitude of oscillations, a, depends on specifics of the electron current noise
spectrum. As mentioned before, it is assumed in this paper that the noise spectrum is much wider than the
revolution frequency. In other words, the correlation time is assumed to be shorter than the revolution period
and the additional focusing ”kicks” experienced by an ion on different turns are uncorrelated. Therefore,
averaging over time, which is equivalent to averaging over all possible variations of the electron bunch charge,
yields the average variation of the amplitude a in a single collision:

〈δa2〉 =
〈(δẏ)2〉
ν2

. (12)

Assuming that the amplitude changes slowly comparatively to the revolution period T , the averaged time
derivative of a can be expressed as

〈da
2

dt
〉 =

〈δa2〉
T

=
〈(δẏ)2〉
ν2T

. (13)

Expressing the amplitude growth via x′ as ẏ = νwcδx
′, one gets

〈da
2

dt
〉 =

〈(δx′)2〉w2

c

T
, (14)

where wc is the absolute value of the Floquet function at the cooling section. Note that the last formula
yields the average growth rate of the betatron amplitude. At any given moment, the amplitude can either
grow or decay because of the random nature of the process.

The angle δx′ produced by the additional focusing due to the charge-per-bunch ripple is δx′ = δd · x.
The mean square of δx′ is

〈(δx′)2〉 = 〈(δd)2〉 · 〈x2〉, (15)

where 〈x2〉 is the mean square of the ion displacement at the cooling section. Because the beam displacement
is expressed via the betatron amplitude and phase as

x = aw cos(νψ + φ), (16)
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the mean square value of the ion displacement at the cooling section is given by

〈x2〉 =
w2
ca

2

2
. (17)

Plugging (15) and (17) into (14) yields the equation for the average growth rate of the betatron amplitude:

〈da
2

dt
〉 =

β2
cd

2a2

2T
· 〈(δd)

2〉
d2

, (18)

where d is the focusing strength of electron bunches with the nominal charge-per-bunch, given by (3) and
βc was substituted for w2

c . The last equation shows that the amplitude of oscillations of an ion grows, in
average, exponentially with the growth time given by:

τ =
4T

βcd2

1

〈(δd)2〉
d2

. (19)

Note that the amplitude growth time does not depend on initial conditions and therefore should be the
same for all ions in a bunch. This indicates that the r.m.s. beam size will grow exponentially in average
with the growth time given by (19).

4 Noise-driven parametric resonance(s) - not emittance growth

Although the derivation presented above can be interpreted as an indication of the beam emittance growth,
the r.m.s. emittance actually does not change within the approximations made in the previous section. It
is trivial to show that linear transformations with the determinant equal to unity do not change the r.m.s.
emittance. Random variations of linear focusing do, however, drive parametric resonances causing beatings
of the β-function with the amplitude increasing with time. The possibility of excitation of parametric
resonances by randomly changing focusing can be demonstrated using the equation for small deviations of
the Floquet function. In the linear approximation, the absolute value of the Floquet function can be written
as w + δw, where δw is small variation from the equilibrium value of w. The equation for the normalized
deviation z = δw/w is

z̈ + 4ν2z = −ν2w4δK. (20)

The last equation can be solved using the method of variation of parameters. That is, the solution of (20)
is written in the form z = C(ψ)e2iνψ + c.c.. The rate of change of the square of the absolute value of C is
proportional to the spectral power at frequencies ν = k/2, where k is an integer number:

d|C|2
dψ

∝
∞∑

k=−∞

Sd(2ν − k) →
∫

∞

−∞

Sd(2ν − k)dk = Rd(τ = 0) = 〈(δd)2〉. (21)

This fact directly points at the excitation of parametric resonances. For a broad noise spectrum, the sum
can be converted to an integral over the spectral density, which is equal to the correlation function at a zero
shift time, which is, in turn by definition, equal to the mean square value of the focusing strength error.

5 Numerical example

Figure 1 shows the growth time given by equation (19) vs. the noise r.m.s. value for the electron beam
parameters listed in Table 1 and fully-stripped gold ions. For the 1% r.m.s. electron charge-per-bunch noise,
the exponential growth time is equal to 1.2 · 106 sec., that is, approximately 330 hours.
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Figure 1: Growth time given by (19) vs. r.m.s. noise value.

6 Conclusions and Discussions

Fluctuations of the electron beam current in the electron cooler can drive parametric resonances and cause
the size of the ion beam in RHIC II to grow. However, calculations presented above show that the focusing
produced by the electron beam is weak due to the relativistic cancellation. Therefore, the electron current
noise level has to be larger than one per cent to cause the ion beam size growth noticeable on the time scale
of a single store (5-10 hours).

The presented analysis does not include non-linear effects and decoherence. Either one of those can cause
real emittance growth instead of coherent beam envelope oscillations. Results of simulations for a Gaussian
transverse profile of electron bunches that were not presented here indicate that the emittance growth due
to nonlinearities should not present a significant problem if the noise is kept below 1%.
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