Optimizing Physics Output from Run-10 Beam Energy Scan

Stefan Bathe for PHENIX

Steve's Current Run-10 Plan

√s _{NN} (GeV) for	# weeks in 25-cryoweek		# weeks in 30-cryoweek	
Au+Au	scenario		scenario	
200	(10)	Confi	rmod	10
62.4	4	Commed		4
39	1.0			1.5
27	2.5			4.5
18	0	Today's d	iscussion	1.5
11.5	1.5			2.5
7.7	1.0			1.0

Steve Vigdor's RHIC Run 10 Plan, 8/7, 2009

PHENIX BUP Run-10

- 1st priority: Au+Au @ 200 GeV
 - NA 60 type measurement utilizing HBD
 - − 1.4 nb⁻¹ (or 10 weeks) \rightarrow 9 x Run-4 significance
- 2nd priority: beam energy scan focusing first between full and injection energy
 - Can measure many more physics observables at higher energies
 - Excitation function of low-mass enhancement
 - Onset of jet quenching
 - v₂ saturation
 - Additional reasons for not running below injection energy:
 - collision rates below injection energy become extraordinarily low
 - operation at 1 Hz or less is poorly matched to the PHENIX optimization for rare probes
 - Au+Au @ 62.4 GeV: 350 M events, 3.5 weeks
 - (PAC recommendation: 4 weeks)
 - Au+Au @ 39 GeV: 50 M events, 1.6 weeks
 - Au+Au @ 27 GeV: 25 M events
 - Au+Au < 22 GeV: move to later</p>

PHENIX Beam Use Proposal for RHIC Run-10 and Run-11, June 2, 2009

Dilepton physics at 62 GeV

With 400 million recorded AuAu @ 62 GeV minimum bias events in PHENIX,

if we assume a similar low mass enhancement to our published Run-04 AuAu @ 200 GeV result, we will have an increase in the statistical significance of 2.

The Run-04 @ 200 GeV low mass enhancement is a 2.6 sigma effect.

Thus, the Run-10 @ 62 GeV result would be a 5.2 sigma effect.

62.4 GeV improvement factor w.r.t. Run-4@200GeV as function of # of events

Light Quark R_{AA} @ 39 GeV

Events needed for given stat. precision light quark RAA

- asked for 1.6 weeks, 50 M events
 - to achieve 10% statistical uncertainty
 - pion R_AA at 5 GeV/c pT
- Down to 1 week, 31 M events, in 25-week scenario (1.5 w. in 30-week sc.)
 - Increases uncertainty to 15% (assuming 3-day change-over is in addition to 1 week)

Light Quark R_{AA} @ 27 GeV

Events needed for given stat. precision light quark RAA

- asked for 4.5 weeks, 25 M events
 - to achieve 10% statistical uncertainty at 3.5 GeV/c pT
- Down to 2 weeks, 11 M events, in 25-week scenario (4.5 w. in 30-week sc.)
 - Increases uncertainty to 18%

Suggestion

- existing ISR data and interpolated ISR and RHIC p+p data will allow publication of 39 and 27 GeV R_AA results immediately, without need to wait for further running
- PHENIX is excited about the greater physics impact of the 27 GeV R_AA and v_2 measurements by adding weeks beyond 25 weeks to this run. However, we recognize the strong interest in collecting a data set at 7.7 GeV. Consequently, we propose adding the additional two weeks to 7.7 GeV and will participate in this running.

What has changed since the PAC meeting?

- We determined--after significant additional detailed studies--we can trigger on sub-injection-energy collisions with high efficiency (ca. 70%)
 - Fermi motion sends spectator fragments into BBC acceptance
 - tight timing cut on BBC coincidence removes most beam-gas and beam-Be background
 - URQMD simulation and reanalysis of 9.2 GeV data as documented in 2 PHENIXinternal analysis notes
 - see also arXiv:0910.3205

What has not changed?

- collision rates below injection energy become extraordinarily low
- operation at 1 Hz or less is poorly matched to the PHENIX optimization for rare probes
- New silicon detector in Run-11
 - background reduction (off-axis events: beam-gas, beam-scrape)
 - Can also be done with BBC timing cut
 - acceptance enhancement
 - measure low p_T particles
 - expand acceptance for multiplicity and flow measurements
 - But only for unidentified charged hadrons
 - And with reduced momentum resolution
 - reduces PHENIX z_{vertex} acceptance
 - +/- 30 cm \rightarrow +/- 10 cm
 - factor 3 reduction in collision rate

Rates at 7.7 GeV

For 7.7 GeV running, the rate from Wolfram is 2.7 Hz. Thus, if we only get ~ (30/150) in the zvertex cut, and the PHENIX and RHIC combined uptime at (0.65*0.6) = 0.39, then in one week of running we get:

(7 days) x (24 hours/day) x (60 minutes/hour) x (60 seconds/minute) x (2.7 Hz) x (30/150) x (0.39)

- == 1.3 x 10^5 events
- So assuming we can trigger on something like 70% of the inelastic interaction cross section, we would record ~ 100,000 events in one week.
- With this small sample, PHENIX can measure only identified hadron ratios, spectra, and fluctuation in <N> and <pT>.

Radiation damage to VTX?

- Steve brought up potential issue of radiation damage to PHENIX VTX detector at sub-injection energy running
- This was suggested by STAR
 - STAR saw many beam-pipe collisions
- We did not consider this a danger because:
 - CA-D adviced this is not an issue when asked about implications of new beam pipe for VTX detector
 - Collision rate
 - p+p @ 500 GeV is: ~ 1 MHz
 - Au+Au @ 7.7 GeV: ~1 Hz
 - Can background at 7.7 GeV really be higher than the collision rate at 500 GeV?
 - If so, background at 7.7 GeV would be overwhelming and making 7.7 running useless
- Confirm in Run-10
 - measurements using dosimeters
 - What measurements can CAD do to confirm? Orbit data?

BACK-UP SLIDES

Dilepton enhancement at 62.4 GeV: p_T dependence

PHENIX: Detailed measurement of the e+e- pair continuum in p + p and Au+Au collisions at 200 GeV and implications for direct photon production , to be submitted for publication

- Run-4 statistical significance makes measurement of double differential mass and p_T dependence marginal
- We must plan for success and take enough data. 11/24/2009 RHIC Machine/Experiment Meeting

Dilepton physics at 62 GeV

- S_{eff}: corresponding signal in background-free environment
- Significance: $S/\varepsilon(S) = \sqrt{S_{eff}}$
- Run-4: 1.5 G recorded events
- HBD increases S_{eff} by factor ~15 due to improved S/B
- 400 M AuAu@62.4 GeV events in Run-10 will yield
 - $-4 \times S_{eff}(Run4@200 \text{ GeV})$
 - 2 x 200 GeV significance (Run-4@200 GeV)

