Dilepton Measurement at 39 GeV

Stefan Bathe for PHENIX

RHIC Machine-Experiment Meeting 4/06/2010

First Glimpse at J/ ψ Peaks from 62 GeV

Peak visible from about 25 % of statistics

• Encouragement that with increased data set (700 M instead of 400 M events) we can not only do dilepton measurement with HBD, but also J/ψ measurement (as promised last week)

Excellent Performance @ 62 GeV

Performance 2.6 x better than expected
 > 660 M events in 2.5 weeks (exp.: 400 M in 4 weeks)

Recorded events at 39 GeV

- 2.6 x better performance makes--previously not possible--dilepton measurement possible at 39 GeV
 - Adding one week of running time to 39 GeV run increases running time from 1.5 to 2.5 weeks
 - 660 M minimum bias events (< 30 cm) recorded at
 62 GeV in 2.5 weeks
 - Translates into 280 M events at 39 GeV (< 30 cm);
 200 M (< 20 cm)
 - Note: previous estimate was 50 M in 1.5 weeks

Scaling from Run-4 Results

Done Well

- Use Raw data from Run-4.
- Scale by events recorded (200/1500).
- Scale by multiplicity ratio:
 - Signal x 0.46
 - Background x 0.46²
- Account for HBD modifications:
 - 20X reduced Background
 - 0.86² reduction of signal.
- Propagate Errors:
 - Counting Statistics.
 - Precision of background normalization.
- Precision of background normalization (sqrt(s) dependence) not simple
- Compare to Run-4 Result

Not accounted for

- Open and closed charm should scale differently than with total multiplicity.
 - MAKES LIFE EASIER
- Change to +/- Field in HBD:
 - Lower minimum electron p_T
 - Lower minimum pair m_T
 - MAKES LIFE TOUGHER
- Calculations only for minimum bias.

Run 4 AuAu Results

 Run-4 AuAu minimum bias show a striking excess in the low mass regime.

 $- x4.7 \pm 0.4(stat) \pm 1.5(syst)$

- Predict 39 GeV expectation by scaling excess w/ two assumptions:
 - Run-4 signal/multiplicity/evt
 - 1/3 of Run-4 signal in 200MeV/c² <m_{ee}< 1 GeV/c²
- for σ_{syst}: background norm. uncertainty scales with like-sign yield (→ HBD lowers both background & background estimator)

Ratio of Expected Uncertainties

- Statistical & systematic errors combined in quadrature
- If the enhancement persists to 39 GeV, we measure it w/ 2X smaller errors than Run-4.
- If the enhancement does not persist, we will still get a statistically significant measurement.

Expected mass distribution

- BLACK—Spectrum if enhancement persists.
- BLUE—Spectrum with 1/3 of full energy enhancement.

Summary

- With 200M events in ± 20cm vertex cut
 - Requires 280M* events recorded inside 30cm
 - Anticipated collection time is 2.5 weeks
- Run-4 result 200 GeV Au+Au
 - Excess over cocktail: x4.7 ± 0.4(stat) ± 1.5(syst)
 - σ_{tot} ± 1.55, so have a 3 σ measurement
- If excess is unchanged at 39 GeV
 - Measured excess x4.7 ± 0.77(total); 6 σ result
- If excess is 1/3 of that at 200 GeV
 - Measured excess x1.57 ± 0.77(total)
- *NB: BUP request was 400M