The APEX Program Run-10

Fulvia Pilat

Machine-Experiments Meeting BNL, December 8, 2009

Outline

- Quick review of APEX Run-9
- Summary of APEX Workshop 2009 (CFN, November 12-13 2009)
- * Proposals for Au high-energy run
- Outlook towards low-energy run
- Prioritization <u>AEAC</u> Committee December 2009

	Physics production o	r beam studies weeks
√s _{NN} (GeV)	25-cryoweek run	27-cryoweek run
200	10	10
62.4	4	4
39	1.5	1.5
27	0	0
18	0	0
11.5 @ STAR	0	2
7.7	4	4
Beam studies @ 5 GeV and @ $v \approx 0.67$	0.5	0.5

APEX operations statistics

Run	Scheduled/Planned %	Beam/scheduled % (availability)	
Run-3	80	65	↑
Run-4	90	84	
Run-5	84	83	Old accounting
Run-6	89	86	
Run-7	92	72 (physics: 49%)	V
Run-8	97	83.4 (physics: 59%)	"Ops"
Run-9	98	82.9 (physics: 54%)	accounting

Run-9 APEX average availability:83%Run-9 Operations time at store :54%

83% (ops accounting) 54%

Run-9 statistics in details

Run9	scheduled	scheduled	actual	actual	APEX	Failure	APEX/scheduled
date	interval	duration (h)	interval	duration (h)	hours(OpLog)	hours	%
17-Mar	2300-0700	8	2346-0700	7.23	6.92	0.32	86.5%
25-Mar	0600-1800	12	1010-1738	9.47	3.85	4.87	32.1%
31-Mar	2000-0800	12	2000-0830	12.50	12.37	0.13	103.1%
8-Apr	0700-1900	12	0700-1658	9.97	8.15	2.80	67.9%
28-Apr	1900-0700	12	1845-0700	12.25	11.58	0.67	96.5%
4-May	0900-1600	7	1638-2142	5.03	5.07	0.00	72.4%
12-May	1900-0700	12	1900-0700	12	11.75	0.25	97.9%
20-May	0700-1900	12	0700-1130	4.5	4.5	7.5	37.5%
26-May	1900-0700	12	1900-0900	14	13.67	0.3	113.9%
4-Jun	0700-1900	12	0728-1915	11.78	11.12	2.25	92.7%
10-Jun	1200-2400	12	1257-2347	10.87	8.25	3.25	68.8%
16-Jun	1900-0700	12	1900-0700	12.00	11.18	0.82	93.2%
24-Jun	0700-2100	14	0700-2125	14.42	12.97	2.23	92.6%
4-Jul	1000-1000	24	1009-1000	23.85	20.15	2.92	84.0%
5-Jul	1000-1000	24	1000-1000	24	21.78	2.22	90.8%
totals		197		183.87	163.31	30.53	82.9%

APEX Schedule End of Run-9 July 4-5

Ra Mc	94nearInt 250 GeV mp development ove Q closer to integer 3Q		Ramps 100 GeV BBQ		Store 100 GeV	Ramps 100 Ge		Injecti	on
	elopment pp94nearl Ptitsyn + team + operatio	ns	Yellow transmissio Schoefer, Fisc operations		BBLR Fischer Calaga	Main I Trans Schulth	ient	Spin Flippe Bai, R	
10am		midni	ght	6am	ę	am	noo	n	4pm

	Store 100 GeV	Injection Store	Ramp+ store 100 GeV	Store 100 GeV	Store 100 (BBQ	GeV			
	Spin Tune Bai Ptitsyn	Linear Optics Correction Wang Bai	Blow-up Emittance Schoefer	⊔ Beta* Measure Ptitsyn	IR Octupo Pilat Marr	H	Polarimeter Huang +team		
4 r	om 10	Opm mi	dnight 2a	am 4	am 🛛	7am	8am	10	am ?
N	ATIONAL LAB	ORATORY							

APEX Run-9: studies with 250 and 100GeV PP

Operations		ORM
Operations		Nonlinear chromaticity
Operations		IR nonlinear corrections
08-29 08-10	0A	Polarimeter studies
09-10	0A	BTF – BBQ calibration
08-27	0A	Beta measurements
Development		pp93lowbeta (at 250 GeV)
09-05	0A	Dx-D0 study
09-22	0A	Spin tune vs. orbit
08-17	0A	pp93lowbeta preparation and commissioning
09-26	OB	DA with AC dipole (injection)
07-19 07-20	0A	Noise PS
08-08	1A	Long range beam-beam
09-17	1A	Space charge an beam-beam
09-21	1A	Bunch length limit
09-06	1A	Off momentum beta-beat
08-27	0A	Linear optics corrections
Development		pp94nearInt commissioning
		Spin flippers

APEX Workshop 2009

Opening Se	ession (THURSDAY No	ov 12	8:30 - 12:15 am)
8:30 8:45 9:00 9:15 9:35 9:45 10:00 10:20 10:40 11:00 11:20	T. Roser W. Christie S. Bathe K. Brown F. Pilat V. Litvinenko A. Fedotov <i>Coffee Break</i> V. Ptitsyn V. Yakimenko W. Guo	15 15 20 10 15 20 20 20 20 20 20	The RHIC upgrade plan Goals run-10, Beam studies for STAR Goals run-10, Beam studies for Phenix and studies for Run-10 APEX Program Overview APEX goals, criteria and selection process Beam development and studies for low energy Beam studies for MeRHIC Beam studies at the ATF Accelerator physics at the NSLS-II
11:40	Y. Semertzidis	20	Beam studies for the EDM experiment

Results of Run-9 and plans for PP studies

15

15

20

20

20

30 20

20

20

(THURSDAY Nov 12 2:00 - 5:45 pm)

2:00	H. Huang
2:20	N. Tsoupas
2:35	C. Montag
2:50	A. Zelenski
3:10	M. Bai
3:35	<i>Coffee break</i>
4:00	V. Ptitsyn
4:25	V. Schoefer
4:40	M. Minty
5:00	W. Fischer
5:20	G. R-Demolaize

Studies and plans for Run-10 (gold)

9:00	L. Ahrens
9:15	S. Tepikian
9:30	V. Litvinenko
9:50	G. Wang
10:10	M. Blaskiewicz
10:30	Coffee break
11:00	W. MacKay
11:20	G. Marr
11:40	C. Zimmer
12:00	W. Fischer

20	Injector studies for polarized protons
15	Optical properties of the AGS helical partial snakes
15	Summary of lumi development at 100 GeV
20	Results of polarimeter studies
25	Polarization and operations at the near integer
	Results and status of spin flippers
25	
25	Spin tune measurement
	Beta* measurement
15	The yellow transmission

- 20 Effect of 10 Hz on performance at the nominal WP
- 20 Summary of the beam-beam wire tests
- 20 Dynamic beta* squeeze

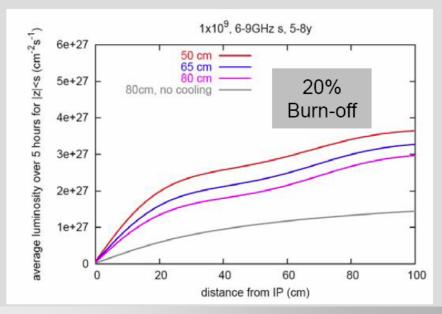
(FRIDAY Nov 13 9:00 – 12:15 am)

- Injector studies with gold
 - Lattices for beta 0.5m
 - IBS suppression lattices
 - Linear optics measurements and corrections
- Studies for stochastic cooling
- DX-D0 experiment Ramp RHIC next the 2/3
- Results and plans for IR corrections
- 20 10 and 12 pole IR corrections

APEX workshop 2009

Diagnostic	developments	(FRIDAY Nov 13 2:00 - 5:00 pm)
2:00	R. Moore	30 <u>Beam Experiments at the Tevatron</u> Discussion
2:30 2:50 3:10 <u>3:30</u>	C. Montag R. Michnoff R. Hulsart <i>Coffee break</i>	20 Studies for the e-lens 20 Fast orbit feedback 20 RHIC BPMs status and improvements 30
4:00 4:25 4:45	C. Dawson T. D'Ottavio F. Pilat	 25 <u>Instrumentation developments for APEX</u> 20 <u>Controls developments for APEX</u> 15 <u>Requirements for IR and DA measurements</u>

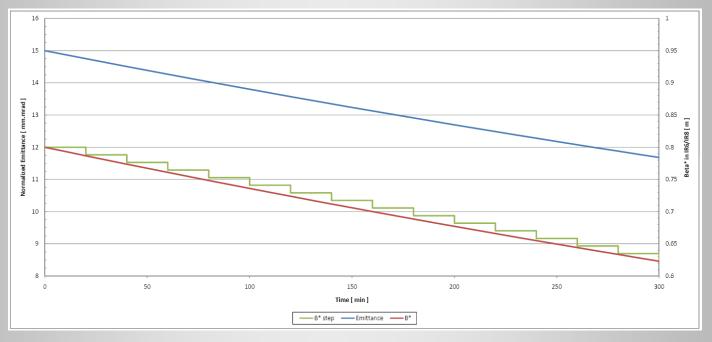
Dynamic beta squeeze – Motivation


Demolaize, Malitsky, Marusic, Pilat, Satogata, Tepikian

* Run10: longitudinal and vertical Stochastic Cooling (SC) should be operational => improve luminosity by a factor 2 for $\beta^* = 0.8$

• To help reaching higher peak luminosity, an application is being developed using the RHIC online model to further push the squeeze of β^* in the experimental insertions IR6 and IR8.

NATIONAL LABORATOR


This year with 4 planes of cooling

 The goal is to have an application similar to the one used for orbit correction at store: β* as a function of time should follow the change in emittance as "controlled" by SC.

Dynamic beta squeeze – Plans for Run10

- Test the online model for limitations on squeeze steps.
- * <u>Main goal</u>: use the effect of SC on emittance changes along a store to increase luminosity by dynamically reducing β^* (i.e. keep the ratio ϵ/β^* constant).

* This can be done in stages: first a step function, then a fitted exponential

2/3 integer development - Motivation

Marr + Commissioning Team

Why?

{Ⅲ

- Ramping near the 2/3 resonance has proved to be a stable area of tune space from the polarization standpoint. Above 100 GeV, polarization loss is suspected to occur crossing resonances when the tune is too close to 7/10.
- Beam transmission is good near, but not close to, the 2/3 fractional tune; this limit needs further characterization.
- Why now?
 - * Demonstrating this ability prior to the next long proton run is important.
 - * A switch of species to investigate a small set of issues is not feasible.
 - * A switch of species is a prohibitive cost of operating time.
 - * Polarization cannot be maintained in the yellow ring, which prohibits other pp activities.
 - * Beam dynamics is independent of species.

2/3 integer – Issues, Plans

- * Ramping near 2/3 at low energy is still not possible due to beam losses at flattop \rightarrow ramp main supply switchover.
 - Tune swing from >0.7 to <0.7 is still necessary but should not affect polarization if swing occurs below 100 GeV.
- * No clear path for tuning to reduce 2/3 resonance strength.
- How close to 2/3 is sufficient?
 - ✤ 0.67 < Q_y < 0.675</p>
- * Develop a new ramp
 - * Au beam at fractional tune of 0.67
 - Use tune swing equivalent to pp ramp, in order to avoid power supply transients early in ramp

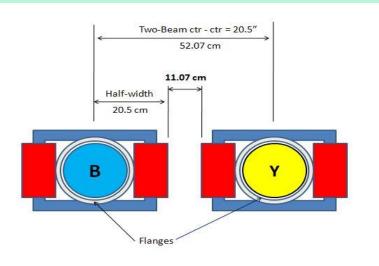
* Commission new ramp

- * Evaluation by power supply group?
- Experiments require multiple ramps over one or more sessions

10 Hz global orbit feedback Plan for this Run

Minty, Marusic, Michnoff, Ptitsyn, Satogata, Robert-Demolaize

BPM data distribution tests (parasitic)


Correction tests in blue ring only using 4 air-core magnets installed in IR 6 and IR 8 (APEX)

Correction tests in blue ring only using 4 new steel laminated core magnets installed in IR 6 and IR 8 (APEX)

Measure effect of magnet in blue ring on the yellow beam (APEX)

Prototype Steel Laminated Core Magnet

New Proposals for 100 GeV/u (so far)

10-01	Pi-modes vs. betatron phase advance	C. Montag
10-02	Effect of long Gaussian tails on beam lifetime in the oncoming beam	C. Montag
10-03	10 Hz Global Orbit Feedback	Rob Michnoff
10-04	Electron lens straightness requirements	C. Montag
10-05	Slow global orbit feedback, ramp	Minty
10-06	Slow global orbit feedback, at store	Minty
10-07	Dynamic beta squeeze	Guillaume Robert-Demolaize
10-08	High order nonlinear IR corrections	C. Zimmer
10-09	RHIC Energy Limits	V.Ptitsyn
10-10	Transition Single Bunch Instabilities	R. De Maria
10-11	Development and evaluation of IBS suppression lattices	Vladimir N Litvinenko
10-12	Development of lattice with 90-degrees phase advance for near 2/3 resonance operation	Vladimir N Litvinenko

Beam dynamics luminosity limits for RHIC operation at low energies

Fedotov, Satogata

The beam lifetime observed during lower energy test runs was limited by machine nonlinearities - this performance can be improved provided sufficient time is given for machine development.

Other, more fundamental, limitations come from:

Intra-beam Scattering (IBS):

* Strong IBS growth at lowest energies- can be counteracted by Electron Cooling (luminosity improvement needed for $\sqrt{s_{NN}} = 5-9 \text{ GeV}$)

Beam-beam:

* Becomes significant limitation for RHIC parameters only at γ > 10

Space-charge:

* At lowest energies, the ultimate limitation on achievable ion beam peak current is expected to be given by space-charge effects.

Need for experiments

- Intensity limit and acceptable space-charge tune shift in RHIC under collisions is crucial question in order to understand benefits from Low-Energy Electron Cooling @ γ =2.7-10 ($\sqrt{s_{NN}}$ = 5-20 GeV)
- Understanding this question is also needed for Low-E RHIC luminosity projections for future Low-E physics runs (FY11, FY14, ...)

We started looking into this with APEX experiments in 2009, using protons at injection energy γ =25 (high beam intensity and low longitudinal emittances can result in large space-charge tune shift):

Two APEX experiments were done:

- 1. May 12, 2009
- 2. June 17, 2009

The question still remains:

What is the limit on space-charge tune shift in RHIC under collisions for Low-E RHIC regime ($\Delta Q_{sc} \gg \xi$)?

Possible 2010 APEX experiments:

- 1. Sqrt[s] = 11.5 GeV (γ=6.13)
- -Typical (expected) parameters: N=1e9, ΔQ_{sc} =0.05, ξ =1.6e-3; $\Delta Q/\xi$ =30
- For higher bunch intensity and quad pumping can reach $\Delta Q_{sc}=0.1$
- 2. Au@injection energy (γ =10.6):
- Typical parameters: N=1e9, ΔQ_{sc} =0.024, ξ =1.6e-3; $\Delta Q/\xi$ =16
- To get to higher space charge we need both high intensity and quad pumping: should be able to reach ΔQ_{sc} =0.07, $\Delta Q/\xi$ =27

It would be useful to have Run-10 APEX time to study beam limits:

- Start with Au ions at typical injection energy With <u>high intensity and quad pumping</u> explore high spacecharge regime.
- 2. Although getting APEX time for γ =6.13 (1.5 weeks run) will be probably difficult, we may have sufficient data from physics stores with high intensity bunches.

It is important that we have good measurement of beam parameters. IPM should work reliably in all planes.

APEX Run-10

- * AEAC meeting in December 2009
- * Physics ~22 December
- * APEX program with high energy

During high energy run:

* Evaluate study proposals at low energy

Dedicated $\frac{1}{2}$ - 1 week for beam studies and development

