

APEX Status and Plan

Phil's Meeting, March 20, 2012

M. Bai

Polarization Performance Challenges

- Polarization Transmission Efficiency
 - To achieve 100% polarization transmission efficiency between 100 GeV and 255 GeV
 - Identify where we loose
 - One study
 - Deep understanding of depolarizing mechanism, benchmarking spin tracking code
 - One study
- Polarization lifetime at store
 - Optimize snake setting including its orbital angle, parasitic/MD
 - Minimize vertical angle between rotators, parasitic/MD
 - Understand the effect of beam-beam on polarization lifetime
 - One study
 - Benchmark stable spin direction calculation
 - One study

Polarization Performance Challenges

- Polarimetry, polarimetry!
 - Fast and Reliable
 - It is very critical for all polarization related beam studies
 - So far, one dedicated beam study proposal
- Develop new working point for pp operation
 - Current working point has issues on emittance growth due to excitation of pi mode, which gets closer to 2/3 resonance.
 - Putting one ring working point above 0.7 showed bad polarization lifetime at store, which is yet not well understood and is on the APEX list
 - In preparation to the success of Elens, we need to find a new working point(s) which can accommodate not only as much as beam-beam tune shift, but also post no adverse impact on beam polarization

- Impact of orbit harmonic correction
 - PI: V. Ranjbar
 - Goal: To determine impact of various harmonic orbit distortions on Polarization in RHIC. Understand if polarization can be improved via targeted harmonic correction to reduce associated spin imperfection resonance strength and to understand the impact of different harmonics on polarization.
 - Beam time request: 6 RHIC ramp to systematically scan the effect of orbital harmonic 29 at spin resonance 393+Qy, 411-Qy on polarization.
 Can be parasitic to physics data taking.
 - Impact on Physics: Can result in significant polarization losses during acceleration. Can also cause failed ramps if the request change in orbit exceeds the control of the orbit feedback.

- Polarization loss crossing 411-Qy resonance in RHIC
 - PI: V. Ranjbar
 - Goal: To Understand Polarization loss due to crossing the 411-Qy and 393+Qy resonance during the RHIC ramp
 - Beam time request: This requires having two special acceleration and decceleration ramp, one goes to Ggamma=370.26 and another one goes to Ggamma=416.26. Polarization will be measured at injection as well as each store energy.
 - Impact on Physics: None

- Evaluate polarization lifetime at store with different working point
 - PI: M. Bai, Y. Luo, S. White
 - Goal: to understand why polarization lifetime is much worse with tunes above 0.7. To have split tune for collision can be very beneficial for Elens. So, it is important to know how polarization behaves with this configuration
 - Beam time request: This study requires 2~3 regular stores, during which both detectors can continue take data.
 - Impact on Physics: Can have much lower average store polarization.
 Luminosity lifet

- Measured polarization profile at Ggamma=462.5
 - PI: V. Ranjbar, M. Bai
 - Goal: Measure Polarization Profile at Ggamma=462.5. Verify the spin tracking res
 - Beam time request: This study needs to store beam at Ggamma=462.5 without rotators for ~4-5 hours. Polarization profile as well as average polarization will be monitored by CNI as well as Jet polarimeter.
 - Impact on Physics: since this is at different energy, experiments may not be interested in taking data.

- Polarimeter performance with special targets
 - PI: H. Huang
 - Goal: To study the effect of target orientation on polarization measurement with different target (regular, high twist, wide 5mm target). To quantify the effect of the target orientation
 - Beam time request: requires two hours of dedicated beam time
 - Impact on Physics: none

APEX

Near-working point development

— Goal:

- To evaluate the polarization transmission efficiency
- To check the feasibility of swing the working point to 0.98 and above for collsion

– Condition:

- Lattice: no beta-squeeze
- Ramping tune: 0.92, 0.93
- Ramp: all four feedbacks+10Hz feedback
- Beam time request: requires 12-16 dedicated beam hours
- Impact on Physics: none

Tentative APEX Schedules for Polarization

session	Duration	Polarization development related studies
March 21	8am – 8pm	Spin flipper, impact of orbit harmonic study: test all the tools including software at injection (parasitic to others)
March 28	8pm – 8am	Polarimeter, Polarization lifetime with split tune(8 hour store), impact of orbit correction
April 4	8am – 8pm	Polarization loss crossing 411-nu(requires up-down ramp)
April 11	8pm – 8am	Polarization profile at Ggamma=462.5
April 18	8am – 8pm	New working point development

APEX Schedule March 21, 2012

APE				
Injection	Injection	Store	Store	Store
ersioncorrection, ed algorithm Luo, Minty ch	Spin flipper M. Bai, P. Oddo,	e suppression	m beta beat it/correction 3ai	Triplet bpm BBA Joane, Jordan
ersion ed al Luo, ch		mode	m be it/cor 3ai	atrix

					₹		
correction,	Minty	Spin flipper M. Bai, P. Oddo,	e suppression	sta beat rection	Triplet bpm BBA Joane, Jordan	sics	
V dispersion correction, weighted algorithm	C. Liu, Luo, Longitudinal match w.o. GammaT C. Montag	ORM data taking Tasha, Jorg,	Beam Beam: pi mode Luo, White	Off momentum beta beat measurement/correction White, Luo, Bai	IP transfer matrix Tepikian, Ptitsyn	Back2Physics	
8am		10am	12pm	3pm	5pm	m	2

8am	10am	12pm	3pm	5pm	Ε
					7 p