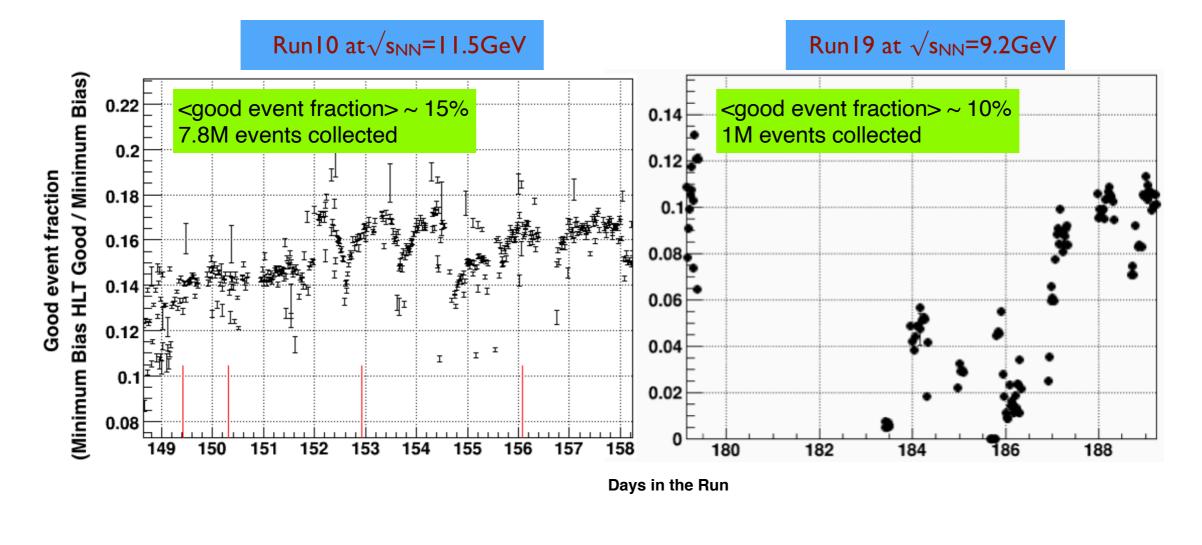
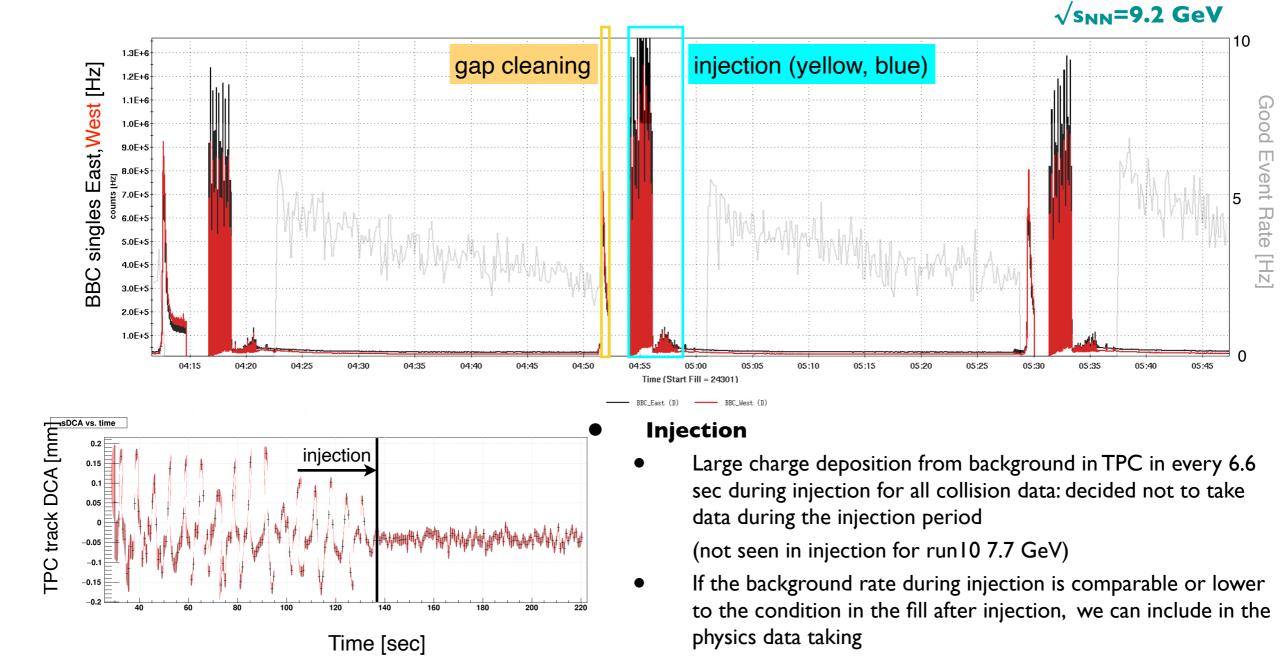

STAR Beam Use Request for Run20										
		"Good"								
	Beam Energy (GeV/nucleon)	$\sqrt{s_{NN}}$ (GeV)	$\mu_{\rm B} \ ({\rm MeV})$	Run Time	requested /collected					
	9.8	19.6	205	4.5 weeks	400M					
	7.3	14.5	260	5.5 weeks	300M	324M				
Run20	5.75	11.5	315	9.5 weeks	230M					
	4.55	9.1	370	9.5 weeks	160M					
	3.85	7.7	420	12 weeks	100M					
Run20	31.2	7.7 (FXT)	420	2 days	100M	51M				
	19.5	6.2 (FXT)	487	2 days	100M					
	13.5	5.2 (FXT)	541	2 days	100M					
	9.8	4.5 (FXT)	589	2 days	100M					
	7.3	3.9 (FXT)	633	2 days	100M	53M				
L	5.75	3.5 (FXT)	666	2 days	100M					
	4.55	3.2 (FXT)	699	2 days	100M	201M				
	3.85	3.0 (FXT)	721	2 days	100M	3.7M+3				


- Top priority for Run20 is measuring next two energies in BES-II at $\sqrt{s_{NN}}$ = 11.5 GeV and 9.2 GeV
- Finishing **fixed target** measurements at $\sqrt{s_{NN}} = 3.5$, 3.9, 4.5, 5.2, 6.2, 7.7 GeV

- On shift from 11/25, full (4-person) shift from 12/10
- Plan to take cosmic data for calibration from 11/26 and be ready for main physics program
- No new/additional detector installed for physics for Run20
- eTOF preamplifier boards (partly damaged in Run 19) have been fully replaced with new boards with improved overload protection
- Fixed target runs to be scheduled ensuring the best performance of eTOF
- Physics trigger and detector configurations for Run20 are similar as in Run19
- Global timing and trigger detector calibrations expected to be done in ~0.5 day with established collisions for the first physics program at $\sqrt{s_{NN}}=11.5$ GeV
- Optimizing running conditions with CAD to maximize the data collection efficiency and yield from the beginning and throughout the run

extra

Rates at 11.5 GeV in Run10 and 9.2 GeV in Run19

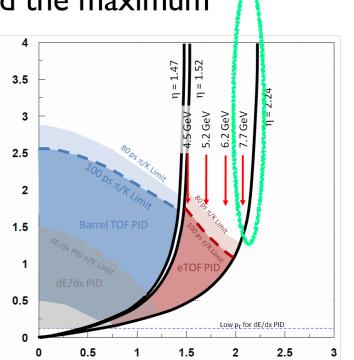

<Good event rate>~15Hz

<Good event rate>~8Hz

Optimizing running conditions for Run19 (and beyond)

- For maximal integrated **luminosity** with minimal **background**
- AGS bunch merging (2-1 vs 3-1)
 - filling takes longer, and beam decay fast
 - luminosity improvement for lower energies
- Beta squeeze
 - effective $(L \sim I/\beta^*)$ but background issues especially with a large beam size
- Fill length optimization
 - gain ~5-15% in integrated luminosity
- Abort gap aligning at STAR (2 abort gaps to 1 abort gap)
 - ~10% gain
- Injection ordering, half-injection scheme
 - useful if background is acceptable
- Dedicated beam scrubbing
 - no immediate improvement on background/vacuum
- Gap cleaning
 - at the end of fill (vs continuous) works well
- Considering extending useful vertex range for good events
 extending Be beam pipe section for Run20/21?
- Continuous online offline QA of data for fast feedback

Injection and gap cleaning


~10-15% gain in integrated luminosity if included

• Gap cleaning

 Short (~1min) during the lowest luminosity at the end of fill. small loss of luminosity with isolated background.

Fixed target runs in Run19

- Sustained clean (good event rate > 70%) and high rates (~1.5 KHz)
- Needed large β^* lattice to have meaningful measurement for low energy beam optics.
- Beam orbit control (vertical bump) works well to keep the rate
- STAR Event trigger rates feed back crucial for beam steering
- "good event rate" not sensitive to beam condition beyond the maximum rate. Needed saturate bandwidth and minimize pile-up
- eTOF crucial, especially for high beam energy (31.2 GeV)
 - complete FXT run in Run20 after eTOF is fixed

Event statistics needed for BES-II (in millions)

Collision Energy (GeV)		9.1	11.5	14.5	19.6
$\mu_{\rm B}$ (MeV) in 0-5% central collisions	420	370	315	260	205
Observables					
R_{CP} up to $p_{\rm T}=5~{ m GeV}/c$	-	-	160	125	92
Elliptic Flow (ϕ mesons)		120	160	160	320
Chiral Magnetic Effect		50	50	50	50
Directed Flow (protons)	20	30	35	45	50
Azimuthal Femtoscopy (protons)	35	40	50	65	80
Net-Proton Kurtosis		85	100	170	340
Dileptons	100	160	230	300	400
${>}5\sigma$ Magnetic Field Significance	50	80	110	150	200
Required Number of Events		160	230	300	400