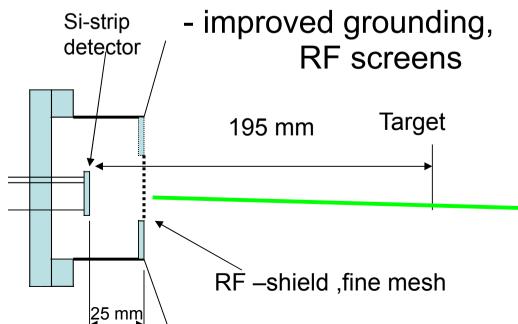
RHIC polarimetry Run13

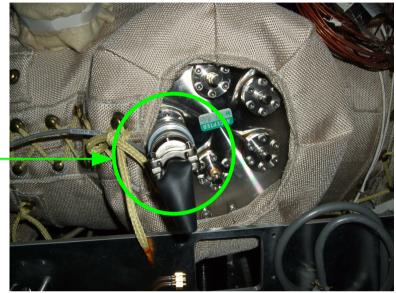
W. Schmidke on behalf of the polarimetry group Time Meeting 05.02.12

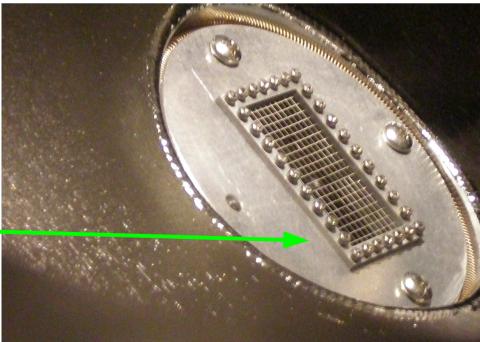
Reminder: Run12 pC polarimeter difficulties:

 RF pickup in detectors: noise swamped signal survived by excluding (many) noisy channels
 Carbon target lifetime: high mortality rate replaced entirely in two lengthy maint. days

Steps to mitigate, new pC features for Run13:


- Shielding against RF
- Target selection & monitoring


Status: pC & H-jet


Run13: RF pickup reduction

- Run12 big problems with RF pickup noise in pC detectors
- Major external source: YEL stochastic cooling pickup
- Steps to reduce:
 - terminate feedthroughs on stochastic cooling pickup
 - upgraded grounding/shielding
 pC preamp boxes on chamber

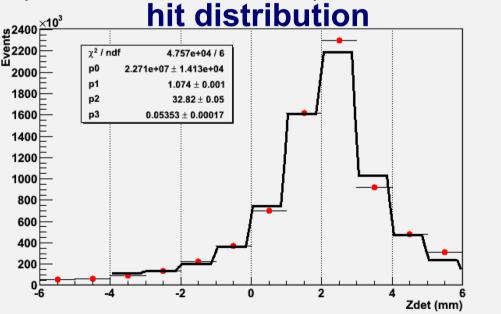
Reduce internal RF from in chamber:

Run13: target lifetime improvement

- Run12 had high rate target mortality: entire target set replaced twice, entire maintenance days
 Run12 used thinnest possible 25 nm thick carbon targets
 Run13 will use 50 nm thick carbon targets, more robust
 - monitor rates closely, avoid DAQ buffer overflows (target speed)
- Observation: targets are non-conducting before use; targets that survive beam exposure are conducting
- Hypothesis: heating in beam changes structure (& conductivity)
- Installed some targets treated to become conductive: treated with intense flash lamp
- Early RHIC operations: expose all targets to low current beam, anneal
- Installing video system to monitor all targets behavior, viability

Run13: long. segmented det.

pC detectors usually segmented azimuthally
Run13: each polar. pair of detectors segmented


longitudinally (along beam):

 One such pair tested in Run12, promising results

Distribution of hits in strips gives info (fit to MC distribution):

• Centroid \Rightarrow

- target position along beam
- varying position \Rightarrow loose target
- Width (from multiple scattering) \Rightarrow
 - target material traversed
 pC scattering→detector
 - effect on P measurement (shifted carbon energies)

target

1 mm strips

⇒ monitor parameters through sweep measurements, check of target status (see broken target quickly)

Status

<u>pC:</u>

Preamps improvements, RF screen/grounding implemented

- Video system installed (one camera each polar., above beam plane)
- All detectors, RF shields, alpha sources, targets installed
 - two longitudinally segmented detectors each pC polarimeter (top two 45° detectors)
- Preamps in Blue polars.: checkouts all OK
- Yellow pumpdown, preamp installation today/tomorrow
- Yellow stochastic pickup feedthrough not yet terminated:

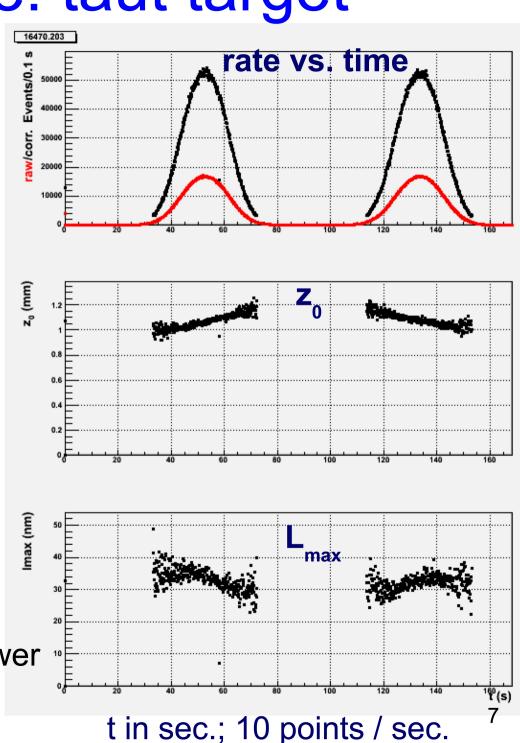
\Rightarrow stochastic cooling group please do this soon

<u>H-jet:</u>

- Performance in Run12 was fine, no changes for Run13
- Readout checkout started, debugging
- Jet target turn on this week

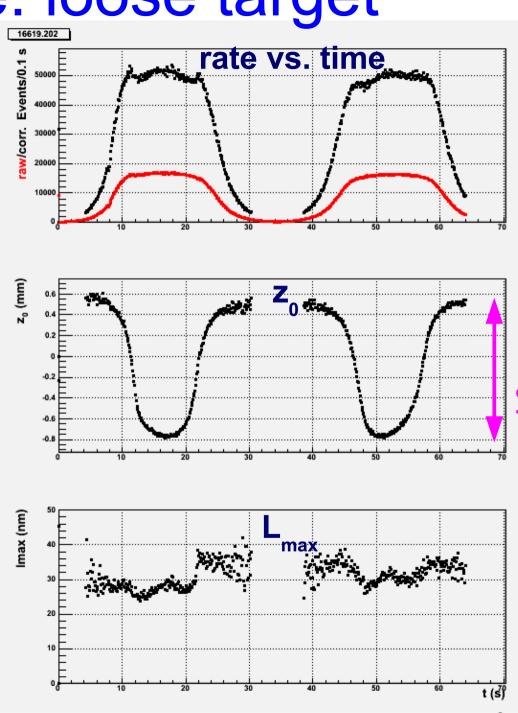
RHIC polarimeters will be ready for beam

Run profile: taut target


•Fits performed for 0.1 sec. bins

Rate ~ position across beam
 ~ gaussian beam intensity:

- z₀ varies ~linearly in time
- Target sweep direction not perpendicular to beam axis, crosses beam at an angle
- $L_{max} \sim constant$
- L_{max} affects P measurement:
 - dE/dx shifts measured E
 - shift $E_{carbon} \Rightarrow$ shift analyzing power


carbon

- can monitor, correct for effect

Run profile: loose target

- Loose target, ~1.3 mm sway
- Attracted radially toward beam
- As it reaches radial center of beam it stays there, rate flat tops
- While at radial center of beam, other forces attract it toward -z, it moves ~1.3 mm along beam
- Reverse process as target drawn out other side of beam
- Long term target monitoring:
- The long. segmented detectors provide useful info on target looseness, viability...
- Also spectacular indication when a target breaks

