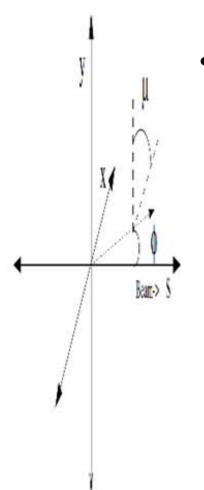

$$\frac{d\vec{S}}{dt} = \frac{e}{\gamma m} \vec{S} \times \left((1 + G\gamma) \vec{B}_{\perp} + (1 + G) \vec{B}_{\parallel} + (G\gamma + \frac{\gamma}{\gamma + 1}) \frac{\vec{E} \times \vec{\beta}}{c} \right) =$$

RHIC FY13 PP RUN: Status

$$\frac{d\vec{S}}{dt} = \frac{e}{\gamma m} \vec{S} \times \left((1 + G\gamma) \vec{B}_{\perp} + (1 + G) \vec{B}_{\parallel} + (G\gamma + \frac{\gamma}{\gamma + 1}) \frac{\vec{E} \times \vec{\beta}}{c} \right) = \bigcirc$$

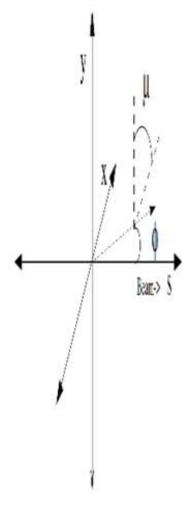
February 2013

Sun	Mon	Tue	Wed	Thu	Fri	Sat
					1	2
3	4	5	6	7	8	9
10		12	13	14	Cold in 15	16
	4K Wave				both rings	
17 P	P12 lattice	test eveni	na	21	22	23
			PS worl	k during Da		
PS gave 24	25	First Colli	sions 27	O *	vernight St	ores
us e-lens			310113	10	19x1/09	
					Declare	The Ma
					Physics	The Ma Begins!
	•				http Wili	ankcalendar2013.com


$$\frac{d\vec{S}}{dt} = \frac{e}{\gamma m} \vec{S} \times \left((1 + G\gamma) \vec{B}_{\perp} + (1 + G) \vec{B}_{\parallel} + (G\gamma + \frac{\gamma}{\gamma + 1}) \frac{\vec{E} \times \vec{\beta}}{c} \right) =$$

- Current glitches of the main dipole ramp
- Faulty ATR dipole making injection difficult
- Emittance blow-up in AGS
- Wfgman glitches between ramp to store ramp.
- Tuning Chroms on Ramp
- Sorting out orbit bumps, Coll. and Chroms on Storage Ramps

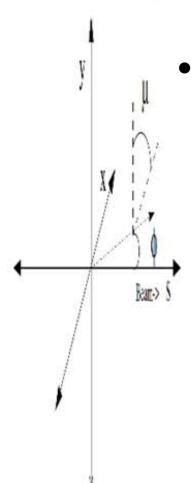
$$\frac{d\vec{S}}{dt} = \frac{e}{\gamma m} \vec{S} \times \left((1 + G\gamma) \vec{B}_{\perp} + (1 + G) \vec{B}_{\parallel} + (G\gamma + \frac{\gamma}{\gamma + 1}) \frac{\vec{E} \times \vec{\beta}}{c} \right) =$$



•Future Issues:

- Improve Ramp Transmission efficiency control bunch length.
- Get bunch-by-bunch dampers on-line
- Get good Polarization Transmission efficiency measurements for Ramp
- Monitor Injection lifetime and Store lifetime
- Control and measure Chromaticity on Ramp (more importantly tune spread)

$$\frac{d\vec{S}}{dt} = \frac{e}{\gamma m} \vec{S} \times \left((1 + G\gamma) \vec{B}_{\perp} + (1 + G) \vec{B}_{\parallel} + (G\gamma + \frac{\gamma}{\gamma + 1}) \frac{\vec{E} \times \vec{\beta}}{c} \right) =$$



Looking Further Forward:

- Testing limits of mini-tune swing at gg260, gg381 and gg422
- Measuring Optics at the resonance stones on ramp.
- Then focus on orbit at these crossing by bumping imperfection resonances

$$\frac{d\vec{S}}{dt} = \frac{e}{\gamma m} \vec{S} \times \left((1 + G\gamma) \vec{B}_{\perp} + (1 + G) \vec{B}_{\parallel} + (G\gamma + \frac{\gamma}{\gamma + 1}) \frac{\vec{E} \times \vec{\beta}}{c} \right) =$$

Summarize:

- We are on Schedule so Far e-lens lattice seems functional at this point
- Power Supplies are optimized for polarization
- We have lots of 'tool's in our tool box to try and get all we can in polarization transmission efficiency