Polarized source upgrade.

Time meeting, June4

Source upgrade project -2010-12.

Main component delivery: Atomic Beam Source- August 2011 Superconducting solenoid- March-2012

The development is not completed, but the new source delivers better quality beam in this Run-13.

Operational Polarized H⁻ Source at RHIC.

RHIC OPPIS produces reliably 0.5-1.0mA polarized H⁻ ion current. Polarization at 200 MeV: P = 80%. Beam intensity (ion/pulse) routine operation: Source - 10^{12} H⁻/pulse Linac - 5·10¹¹ AGS - 1.5-2.0 · 10¹¹ RHIC - 1.5.1011 (protons/bunch).

A 29.2 GHz ECR-type source is used for primary proton beam generation. The source was originally developed for dc operation. A ten-fold intensity increase was demonstrated in a pulsed operation by using a very high-brightness Fast Atomic Beam Source instead of the ECR proton source .

Pulsed OPPIS with the atomic hydrogen injector at INR, Moscow, 1982-1990.

OPPIS with atomic H injector layout.

A result of this "upgrade" is practically a new source.

- A new superconducting solenoid.
- A new atomic hydrogen injector.
- A new vacuum system.
- A new H-ionizer cell, energy separation system and pulsed PS system.
- A new control and interlock system.
- Major upgrades of laser system.
- Major modifications of the Low Energy Beam Transport system.
- Major upgrades in 200 MeV polarimeter.
- A new test-bench for atomic injector studies.
- Many other upgrades...

"Fast Atomic Beam Source", BINP 2011

Within the Na-jet ionizer acceptance.

He-ionizer cell and three-grid energy separation system.

New PLC interlock and monitoring system.

Graphics by Yuri Bezpalko

Source intensity and polarization.

- Reliable long-term ·operation of the source was demonstrated.
- Very high suppression of un-polarized beam component was demonstrated.
- Small beam emittance (after collimation for energy separation) and high transmission to 200 MeV.

Rb-cell, Temp., deg. C	81	86	91	96
Linac Current, µA	295	370	410	570
Booster Input ×10 ¹¹	4.9	6.2	7.3	9.0
Pol. %, at 200 MeV	83-84	83	80.5	78

Rb-81, T9-current-295 uA (4.9*10^11)

Polarization measurements at 200 MeV, March 1-4

200 MeV polarization in Run-2012, high intensity operation

Summary

- The new source is working. Reliable long-term operation at steady current and polarization.
- The maintenance time is significantly reduced.
- Polarization is on average about 3% higher then ECR-based source. It is expected that polarization can be further improved to over 85%.
- The source intensity is about 5-10 mA. Due to strong spacecharge effects only fraction of this current is transported and accelerated in RFQ and Linac. These losses can be reduced.