

A Prototype of the SNS Optics Database.

Nikolay Malitsky

1. Introduction

Database is an important part of the modern software environment. It aims to consolidate
diverse data sets and facilitate their analysis and management. Accelerator data can be
distributed into several domain databases, such as Naming, Survey, Magnet, Optics, and
others. Each domain is maintained by the corresponding group of specialists and is
associated with their particular applications. The Optics database is a persistent
representation of the accelerator model and provides accelerator physicists with data of “
all elements that can influence single particle motion (in their idealized operation) and
only those elements … “[1]. Usually, the schema of the Optics database reflects the
structure of existing accelerator codes. In 1992, the LAMBDA collaboration [2] had
introduced the most complete implementation of the Optics database employing the
MAD model. Since that time, a new generation of object-oriented accelerator packages
has been introduced and developed. For the SNS ring applications, we are using the
Unified Accelerator Libraries (UAL) environment [3] that currently joins together six
object-oriented libraries, such as PAC, TEAPOT, ZLIB, ACCSIM, ORBIT, and ALE.
The paper presents a version of the Optics database representing the UAL accelerator
model.

2. Schema of the Optics Database

The schema of the Optics database has been implemented after the UAL accelerator
object model using the object-relational mapping approach [4]. Figure 1 illustrates the
structure of the UAL accelerator model:

����������� �����������
���
��� �����

�������

�������� �����

������

��������

� � �

��������������

������

�����

��������

���� ��!

� � �

�������	��

�

�	���

�		�
����

Figure 1: UAL accelerator object model.

The model is based on three entities:

• Accelerator is a hierarchical tree of accelerator nodes, elements and sequences of

elements.
• Accelerator Node is a basis class of an accelerator element and sequence of elements.

There are many different types of accelerator nodes (e.g. sbend, quadrupole, etc.) But
all of them have the same structure: an open collection of accelerator node buckets.

• Accelerator Node Bucket is a set of attributes relevant to the single physical effect or
feature (e.g. magnetic field, aperture, offset, rotation, etc.)

The following sections describe the representation of these objects in the Optics database.

2.1. Accelerator

In the UAL model, an accelerator is described as a hierarchical tree of accelerator nodes.
This definition is very general and can be applied to different accelerator machines, their
components, or transfer lines. Usually, the modern accelerator complexes contain several
accelerators and each of them is developed by a separate group of scientists. To avoid
naming collisions among different teams, each accelerator identifier determines a
separate naming space for its elements and is used as the first component of combine
element names in the Optics Database. All accelerator identifiers are located in the
following table:

create table accelerators (
 accelerator_id varchar2(30),
 primary key (accelerator_id)
);

The UAL accelerator description is highly modularized. An accelerator structure is
composed of independent entities, accelerator nodes. Each accelerator node, in turn, is
built from the collection of separate element buckets, orthogonal sets of element
attributes. Such organization facilitates a fine-grain approach for the versioning of
accelerator data. In our scheme, the accelerator description has three independent version
attributes: lattice_id, state_id, and source_id. The first attribute is associated with an
accelerator structure. The state_id attribute represents a set of element buckets used in the
particular application; source_id defines the origin of element data (e.g. expectation,
measurement, etc.). In the Optics database, each of these attributes has its own table:

create table accelerator_lattices (
 accelerator_id varchar2(30),
 lattice_id varchar2(30),
 primary key (accelerator_id, lattice_id),
 foreign key (accelerator_id) references accelerators (accelerator_id)
);

create table accelerator_states (
 accelerator_id varchar2(30),
 state_id varchar2(30),
 primary key (accelerator_id, state_id),
 foreign key (accelerator_id) references accelerators (accelerator_id)
);

create table accelerator_sources (
 accelerator_id varchar2(30),
 source_id varchar2(30),
 primary key (accelerator_id, source_id),
 foreign key (accelerator_id) references accelerators (accelerator_id)
);

A set of accelerators together with their version attributes is associated with system_id .
All these associations are stored in the accelerator_systems table:

create table accelerator_systems (
 system_id varchar2(30),
 accelerator_id varchar2(30),
 lattice_id varchar2(30),
 state_id varchar2(30),
 source_id varchar2(30),
 primary key (system_id, accelerator_id),
 foreign key (accelerator_id, lattice_id) references accelerator_lattices (accelerator_id, lattice_id),
 foreign key (accelerator_id, state_id) references accelerator_states (accelerator_id, state_id),
 foreign key (accelerator_id, source_id) references accelerator_sources (accelerator_id, source_id)
);

2.2. Accelerator Node

Accelerator node is a basis class of various types of accelerator elements and sequences
of elements. In the Optics database, this class is represented by the corresponding table:

create table accelerator_nodes (
 accelerator_id varchar2(30),
 node_id varchar2(30),
 length float(126) not null,
 design_id varchar2(30),
 node_type varchar2(30),
 primary key (accelerator_id, node_id),
 foreign key (accelerator_id) references accelerators (accelerator_id),
 foreign key (node_type) references accelerator_node_types (node_type),
);

The first two fields, node_id and accelerator_id, form a composite element identifier
that provides the referential integrity of the whole Optics database. The third field is an
effective length of the accelerator node. The optional attribute design_id is a reference to
the design element. This reference allows one to support the relationship between

operational and design accelerator descriptions. The discriminator node_type specifies the
type of the accelerator node.
The UAL model preserves all MAD element types (such as sbend, quadrupole, rfcavity,
etc.) and defines the mechanism for introducing new ones. A predefined set of legal UAL
node types is located in the accelerator_node_types table:

create table accelerator_node_types (
 node_type varchar2(30),
 primary key (node_type)
);

Elements of different types have the same structure and do not require to be represented
by specialized tables. Contrary, the Sequence, a composite node in an accelerator
hierarchical tree, introduces an one-to-many relationship between composite and
contained nodes. According to the object-relational mapping approach, this association is
implemented in the following table:

create table accelerator_sequences (
 accelerator_id varchar2(30),
 lattice_id varchar2(30),
 sequence_id varchar2(30),
 node_id varchar2(30),
 position float(126) not null,
 primary key (accelerator_id, lattice_id, node_id),
 foreign key (accelerator_id, lattice_id) references accelerator_lattices (accelerator_id, lattice_id),
 foreign key (accelerator_id, sequence_id) references accelerator_nodes (accelerator_id, node_id),
 foreign key (accelerator_id, node_id) references accelerator_nodes (accelerator_id, node_id)
);

The accelerator_id and lattice_id fields specify the accelerator name and the version of
the accelerator structure, respectively. The node_id column keeps identifiers of the
accelerator nodes contained into the sequence_id structure. The position attribute is a
longitudinal position of the node with respect to the beginning of the parent sequence.

2.3. Accelerator Node Bucket

Accelerator node bucket encapsulates the minimal set of attributes relevant to the single
physical effect (e.g. magnetic field, offset), element feature (e.g. size, aperture), or special
algorithm parameters. This structure addresses several tasks. First, it facilitates selection
and classification of well-defined concrete data types. Second, it provides a consistent
scalable approach for introducing and integrating new elements and element attributes.
Finally, it offers a uniform algorithm-neutral element description that is open to diverse
applications. Usually, each application requires an individual combination of element
buckets. For example: a survey layout is based only on geometrical parameters; design
programs use main element attributes; simulation codes includes field errors,
misalignments, aperture, and other features that are critical for the particular scenario and
accelerator. These applications can be configured in many different ways. In the Optics
database, all these configurations are stored in the accelerator_node_buckets table:

create table accelerator_node_buckets (
 accelerator_id varchar2(30),
 state_id varchar2(30),
 node_id varchar2(30),
 bucket_type varchar2(30),
 primary key (accelerator_id, state_id, node_id, bucket_type),
 foreign key (accelerator_id, state_id) references accelerator_states (accelerator_id, state_id),
 foreign key (accelerator_id, node_id) references accelerator_nodes (accelerator_id, node_id),
 foreign key (bucket_type) references accelerator_bucket_types (bucket_type),
);

The accelerator_id and state_id fields specify the accelerator name and the version of
the accelerator node configuration, respectively. The bucket_type column keeps
identifiers of buckets included in the node_id structure.
A predefined set of legal UAL bucket types is located in the accelerator_bucket_types
table:

create table accelerator_bucket_types (
 bucket_type varchar2(30),
 primary key (bucket_type)
);

Each bucket type is represented by the separate table. At this time, we consider buckets
with bend attributes, magnet and accelerating fields, alignment errors, and aperture
parameters:

create table bend_buckets (
 accelerator_id varchar2(30),
 node_id varchar2(30),
 source_id varchar2(30),
 hangle float(126),
 vangle float(126),
 primary key (accelerator_id, node_id, source_id),
 foreign key (accelerator_id, node_id) references accelerator_nodes (accelerator_id, node_id),
 foreign key (accelerator_id, source_id) references accelerator_sources (accelerator_id, source_id)
);

create or replace knl_va_type as varray(10) of float(126);
/
create or replace ktl_va_type as varray(10) of float(126);
/

create table mfield_buckets (
 accelerator_id varchar2(30),
 node_id varchar2(30),
 source_id varchar2(30),
 knl knl_va_type,
 ktl ktl_va_type,
 primary key (accelerator_id, node_id, source_id),
 foreign key (accelerator_id, node_id) references accelerator_nodes (accelerator_id, node_id),
 foreign key (accelerator_id, source_id) references accelerator_sources (accelerator_id, source_id)

);

create or replace volt_va_type as varray(10) of float(126);
/
create or replace lag_va_type as varray(10) of float(126);
/
create or replace harmon_va_type as varray(10) of float(126);
/

create table rffield_buckets (
 accelerator_id varchar2(30),
 node_id varchar2(30),
 source_id varchar2(30),
 volt volt_va_type,
 lag lag_va_type,
 harmon harmon_va_type,
 primary key (accelerator_id, node_id, source_id),
 foreign key (accelerator_id, node_id) references accelerator_nodes (accelerator_id, node_id),
 foreign key (accelerator_id, source_id) references accelerator_sources (accelerator_id, source_id)
);

create table alignment_buckets (
 accelerator_id varchar2(30),
 node_id varchar2(30),
 source_id varchar2(30),
 x float(126),
 y float(126),
 z float(126),
 phi float(126),
 theta float(126),
 psi float(126),
 primary key (accelerator_id, node_id, source_id),
 foreign key (accelerator_id, node_id) references accelerator_nodes (accelerator_id, node_id),
 foreign key (accelerator_id, source_id) references accelerator_sources (accelerator_id, source_id)
);

create table alignment_buckets (
 accelerator_id varchar2(30),
 node_id varchar2(30),
 source_id varchar2(30),
 shape float(126),
 x float(126),
 y float(126),
 primary key (accelerator_id, node_id, source_id),
 foreign key (accelerator_id, node_id) references accelerator_nodes (accelerator_id, node_id),
 foreign key (accelerator_id, source_id) references accelerator_sources (accelerator_id, source_id)
);

All these tables have a similar structure. The first two fields, accelerator_id and node_id,
identify the accelerator node. The source_id field is associated with the origin of bucket
attributes. Attribute values can be initialized from many different sources: physicist’s
assumptions and requirements, calculation, or other specialized databases (such as
Magnet and Survey databases). The list of other columns is summarized in the table 1:

Table 1 : List of bucket tables.

Bucket
type

Table Columns Description

hangle horizontal bend angle bend bend_buckets
vangle vertical bend angle
knl array of normal multipole components mfield mfield_buckets
ktl array of skew multipole components
volt array of RF voltages
lag array of phase lags

rffield rffield_buckets

harmon array of harmonic numbers
x offset in the x-direction
y offset in the y-direction
z offset in the z-direction
phi rotation around the x-axis
theta rotation around the y-axis

alignment alignment_buckets

psi rotation around the s-axis
shape aperture shape
x horizontal half-aperture

aperture aperture_buckets

y vertical half-aperture

3. Future Activities

The presented schema defines a frame of the Optics database. Currently, we are working
on a mechanism for the initialization of its tables. Data can be inserted into the database
in many different ways. In the past, each vendor offered the specialized user-friendly
environment that facilitated access to the database records (e.g. Oracle Forms). The
choice of the particular vendor or tool was very important and determined the structure of
project applications. At this time, the Web technologies have changed the situation by
defining several industrial standards for each layer of database-based multi-tier
infrastructure. It shifts the emphasis in the software development process from the
selection of the particular tool to the selection of the most appropriate and promising
industrial standards. The essential part of the modern infrastructure is occupied by the
Extensible Markup Language (XML) technology. XML has become very popular in
many areas and is considered as a universal mechanism for the initialization and
configuration of various software systems. In our environment, we plan to employ the
XML software for integrating off-line and online simulation facilities and developing
interfaces based on Accelerator Description Exchange Format (ADXF [5]) files (see Fig.
2). ADXF was developed to provide a complete and uniform description of accelerator
data used in diverse beam dynamics programs. The structure of this description is
mapped from the common UAL accelerator object model and theoretically consistent
with other accelerator model representations. Our next application will integrate together
three representations: Accelerator Model classes, Optics database, and ADXF files. It

allows us to test the compatibility of their structures and initialize the Optics database
tables from the ADXF file.

���������	�
��������������

�����������������������

�������������

���������

Figure 2 : ADXF-based interfaces.

4. Acknowledgments

The author would like to thank T. Nepsee, S.Sathe, J.Smith, and J.Wei for many valuable
discussions.

References:

[1] F.C.Iselin, E.Keil, R.Talman. Request for the Accelerator Description Standard. 1998.
[2] S.Peggs et al. LAMBDA Manual. RHIC/AP/13, 1993.
[3] N.Malitsky and R.Talman. Unified Accelerator Libraries. CAP, 1996.
[4] M.Blaha and W.Premerlani. Object-Oriented Modeling and Design for Database
Applications. Prentice Hall, 1998.
[5] N.Malitsky and R.Talman. Accelerator Description Exchange Format, ICAP, 1998.

	Introduction
	Schema of the Optics Database
	Accelerator
	In the UAL model, an accelerator is described as a hierarchical tree of accelerator nodes. This definition is very general and can be applied to different accelerator machines, their components, or transfer lines. Usually, the modern accelerator complex
	Accelerator Node
	Accelerator Node Bucket

	Future Activities
	Acknowledgments
	
	
	
	References:

