AT

SPMLATIDN NHFIJTRUN SOURCE

Beam-Based BPM Alignment

BNL/SNS TECHNICAL NOTE

NO. 116

Richard Taman and Nikolay Malitsky

September 16, 2002

COLLIDER-ACCELERATOR DEPARTMENT
BROOKHAVEN NATIONAL LABORATORY
UPTON, NEW YORK 11973



Brookhaven National Laboratory

September, 2002

Beam-Based BPM Alignment

Richard Talman and Nikolay Malitsky

Accelerator-Collider Department
Brookhaven National Laboratory

ABSTRACT

An operational, beam-based, null-measurement, control room proce-
dure designed to steer the closed orbit through the effective (no steer) center
of every quadrupole is described. Performance of the procedure is simu-
lated using UAL (Unified Accelerator Libraries). Matching SNS hardware
availability, quadrupole strengths are assumed to be trimmable, but only in
families, not individually. The accuracy of the procedure is unaffected by
geometric and/or electrical misalignment of BPM’s (beam position moni-
tors) but calibration of their misalignments is a byproduct of the procedure.
Some of the many possible failure mechanisms have been modeled, and have
been found not to invalidate the procedure. A mini-introduction to the use
of UAL is also given.
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1. Definition of the Task

We are concerned with steering the closed orbit through the centers of all quadrupoles.
Presumably the geometric centers of the quadrupoles themselves and the geometric centers
of their BPM’s have been aligned fairly accurately during the manufacture and installa-
tion phases. But magnet imperfection may cause significant displacement of the effec-
tive quadrupole center (position of no particle deflection) from its geometric center and
electronic imperfection may cause significant displacement of the effective BPM center
(position the data acquisition system reports to be zero) relative to its center.

In this report, to avoid ambiguity, when “center” is used, be it quad center or BPM
center, the meaning will always be effective center that is meant. From the control room
the absence of steering is the determinant of beam passage through effective quadrupole
center and output of zerol from the BPM is the determinant of beam passage through the
effective center of the BPM.

If all geometric alignments, and all effective-relative-to-geometric alignments have been
performed with satisfactory accuracy during construction and installation the BPM’s can
be used to achieve the desired closed orbit steering. The present paper describes a control
room, beam-based, procedure that is independent of the BPM alignment and can therefore
corroborate, or even supercede, the installation accuracy.

In the control room one has passive access to the displacement of the closed orbit
position at every BPM location and one can actively alter the closed orbit using horizontal
and vertical steering elements, also referred to as kickers. T Also, for those quadrupoles
having trim windings, it is possible to influence the lattice actively.

An ideal arrangement would deliver every quadrupole with a full “detector/adjuster
package” consisting of trim winding, horizontal and vertical kickers, and horizontal and

”

vertical BPM.Y There is a natural “null measuremen operational procedure that can be

t To be boringly explicit, “zero” output from the BPM means that the actual digital number produced by
the data acquisition system, from the analog BPM signal(s), has the value that corresponds to the beam’s
having passed through the geometric center of the BPM to the best knowledge of the control system. But, in
what follows, it will be the ability of BPM’s to accurately measure changes in position that will be important.
Their absolute readings will be irrelevant.

¥ In this paper the terms BPM and detector are used interchangeably. Also the terms kicker, steerer,
adjuster, and corrector are synonyms.

I 1t will turn out that missing BPM’s will not invalidate the proposed procedure but the kickers must be
present, for the procedure to work.



performed using a quadrupole (call it quad 7, and let its inverse focal length be ¢;) endowed
with such a package. Taking the quad center as origin, let the closed orbit position be

(x4, vi). The effect of the quadrupole is to cause angular orbit deflections
Az} = —qizi, Ay = qiyi- (1.1)

The effect of making fractional change f (absolute change f¢;) in the quadrupole’s strength
is to introduce a further kink (0Ax} = — fqiz;, Ay, = fqiy;) that changes the closed orbit.
This changes not only (x4, yg4;) but also the complete set of closed orbit measurements at
all Ng BPM locations, (x4, yq;),7 = 1,2, ..., Ng. A simple operational procedure is then to
adjust the local kicker values to “null out” this closed orbit change; the kicker strengths
will be dz} = —0Az,, oy} = —dAy.. (In principle the nulling could employ a single BPM
(which need not be the i’th) but a more robust (less subject to noise) procedure would be

to average numerous BPM’s.) From the available data one obtains

o
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This information can be used to center the beam on the quad, or more practically, if

T (1.2)

there is a local BPM, to calibrate the BPM so that its electrical center coincides with the
quad center, both horizontally and vertically. The BPM will then serve as a secondary, or
transfer, standard. After all BPM’s have been calibrated in this way they can be used for
a grand smoothing that puts the beam through the centers of all quads. Even if a quad
lacks a BPM the closed orbit can be adjusted to pass through the quad center, provided
there is a local steering elements that can be used for the null measurement.
Unfortunately, in practice, all quadrupoles are not necessarily delivered with the full
detector/adjuster package. In the case of SNS, though there are trim windings on all
quadrupoles, the quadrupole trims are not individually powered. Rather the quadrupoles
are grouped in families of 8 having trim windings powered from a single power supply. The
purpose of this report is to generalize the null calibration procedure in this circumstance

and to simulate its performance using UAL.



2. Orbit Smoothing Algorithms

It has to be assumed that there is a control program which uses Ny detectors (BPM’s)
and N, adjusters to smooth the orbit horizontally, where “smooth” may mean that all

measured offsets are zero. More commonly there is a redundantly generous distribution of

BPM’s so that N; > N,, so the “badness”

Nd CE'Z

B (62, 6h, ..., 0ahy,) = > B(’;) (2.1)
id=1 id

can be minimized but not be made to vanish. Here B is expressed as a function of the

adjuster deflections dz), oz, ..., 5353\,& since they are the quantities to be varied in order
to minimize B. Mathematically this leads to the equations
oB
d (927, )

In this report the UAL algorithm (TEAPOT module) that simulates orbit smoothing

=0, ig=1,2,...,N,. (2.2)

is called hsteer and the corresponding vertical algorithm is vsteer. Programs like this
rely on the optical model of the lattice to calculate an “influence function” Tj, (i4) which is

the closed orbit displacement at detector ¢; caused by unit deflection at adjuster location

(0)

g Starting from closed orbit displacements T, , the effect of applying kicks 5:5 is to

(0)

produce displacements T given by

LYig  _
== +§:Mm (2.3)
ﬁid ﬁld ig=1
Letting Q = (021, 0z, ..., 02’y )T be the (transpose of the) vector of unknowns and sub-
stituting Eqgs. (2.3) into Eqs ( 2) yields equations (in matrix form)
MQ=V, (2.4)
where
Na Na  ,.(0)
Mo, = Y To(ia) Ty (i), Va=—) ’Zﬁ%u@. (2.5)
ig=1 iq=1 \/B;

tq

Solving Eq. (2.4) yields kicker values which minimize the badness.
In an uncoupled lattice containing no nonlinear elements this operation would need to

be done just once, and the same for vertical. But with skew elements and/or sextupoles



or other nonlinear elements present in the lattice there are horizontal deflections due to
vertical offsets (and vice versa). This typically makes it necessary to proceed by successive
iterations of horizontal steering, vertical steering, and decoupling. But, for simplicity in

this report, the lattice is assumed to be uncoupled.

3. BPM Alignment at SNS with Quadrupoles Ganged in Families

Consider, for example, the family consisting of the N;(=8) quadrupoles labeled QFH in the
SNS lattice whose MAD lattice description file is BmBasedBPMAlign.mad. This file differs
only from file ff_sext_latnat.mad by name changes made for the present simulation.
Both files are available at http://www.ual.bnl.gov. The task is to measure all Ny
horizontal misalignments and all N; vertical misalignments. Of course there are also many
other quadrupoles, grouped in other families. The procedure described here is immediately
applicable to all such families. It is not even required that all nominal quadrupole strengths
in the same family be equal or that the fractional trim strengths be equal. But, in this
report, these simplifications will be made.

The strategy to be followed is much the same as with a single quadrupole trim. An
intentional systematic change of the strengths of the quadrupoles in a single family causes
the closed orbit to shift because of the (random and unknown) displacements of the
quadrupoles in the family. Using an orbit smoothing algorithm the associated kicker mag-
nets can be adjusted to undo this change. Then the individual quad misalignments can be
inferred from the kicker strengths and the nominal quadrupole strengths using Egs. (1.2).
At that time all BPM offsets would be recorded to enable subsequent use of the BPM’s as
“secondary standards”.

Concentrating first on the horizontal measurement, it is essential now to restrict the
adjusters being used to precisely those associated with the quadrupoles in the QFH family.
Therefore N, = N,;. To avoid distraction it also seems appropriate to concentrate attention
only on the associated detectors, so Ny = Nq.Jr So from here on the term “perfectly smooth

closed orbit” is equivalent to B = 0 where B is given by Eq. (2.1) with N; = N,. Because

 In the single quadrupole algorithm it was said to be appropriate, for noise averaging etc., to utilize
detectors other than the local one. For the same reasons, even in the multiple quad problem, detectors
outside the family could be put to beneficial use. To simplify setting up the lattice this was not done in our
simulation and it was not needed because the simulation did not include random BPM noise.



N, = Ny, the number of equations (2.2) is equal to the number of unknowns. Therefore the
equations have a unique solution. If the lattice were ideal (except for the misalignments
being investigated) this would be the end of the story. But, for reasons described in other
sections, when the calculated kicker values are installed the value of B is still found to
differ from zero. This may necessitate proceeding by successive approximation.

In any case one eventually achieves the result B = 0, be it in simulation or in the
control room. Repeating, for emphasis, what has already been implied, this only means
that the orbit is perfect as far as the QFH detectors are concerned. Let us refer to this
restricted closed orbit as the “QFH closed orbit”. The orbit shown by all BPM’s in the
ring will not necessarily improve in the successive approximations described in the previous
paragraph. In fact, our simulation shows that the closed orbit at points outside the QFH
family frequently is made worse by a next approximation. Though disconcerting this is
what is to be expected.

In the control room the QFH closed orbit appears to be perfectly smooth when all BPM
outputs from the QFH family are zero. But this only means that the closed orbit has been
adjusted to pass through the electrical centers of every QFH detector. Let us assume
that this has been done (even though, in this circumstance, because of misalignments, the
actual closed orbit may deviate badly from the true design closed orbit, which is defined to
pass through quad centers.) The smoothing algorithms used to achieve this were described
in the previous section.

Next we apply the systematic fractional strength change f to all quadrupoles in the
QFH family. This causes the QFH closed orbit to be no longer smooth. Applying hsteer
and vsteer again yields the kicker strengths needed to re-smooth the orbit. Finally the
misalignments being sought are given by Eq. (1.2). This completes the determination of

closed orbit displacement relative to quad centers at all quads in the family.



4. Fundamental Limitations

As with all operational procedure, the BPM calibration can be compromised by world
realities. Some BPM’s may not function at all and electronic noise will cause fluctuation
of the measured positions. These effects are perhaps the ones most likely to limit the
practicality of the procedure being described here. For this procedure the absolute accuracy
of BPM’s is irrelevant, but it is important that their least count correspond to a very small
distance—or rather that they be capable of stably and reproducibly recording very small

beam position changes.

Nevertheless, since one has no way of predicting such electronic malfunctioning, except
from empirical data or at such low signal levels that shot noise dominates, we have so far

assumed in the simulation that all BPM’s function perfectly.

Another practical complication is that BPM’s, though physically close to their associ-
ated quadrupoles, cannot be precisely superimposed. But, provided they are reasonably
close and that signals are available from other nearby BPM’s, values can be accurately
interpolated to the precise quadrupole locations. Even if vertical quads are restricted to
vertical focusing quad locations, and horizontal to horizontal (as is common) there are
reliable interpolation procedures to produce the signals assumed in this report. Similarly,
even though kickers are not precisely in their ideal locations, the kicker strengths can be
appropriately adjusted. In the simulation all such complications are ignored; it is assumed
that all detectors and adjusters are ideally superimposed on their associated quadrupoles.

How to account for non-optimal kicker locations is considered briefly below.

There are other more fundamental effects that potentially limit the practicality of the
proposed method. The effect of increasing a quadrupole strength is not just to cause a
steering effect proportional to the quad offset. There are also changes in the lattice optics,
both tunes and beta functions. At worst the change in quad strength could make the
lattice unstable and, at a minimum, the changes in lattice optics will cause the closed
orbit fitting programs to be somewhat inaccurate. Such a limitation is already present in
the single quadrupole procedure of section 1. In the interest of increased signal to noise
ratio one wishes to make the quad strength increment fg; as large as possible, but the

need to limit lattice distortion forces one to compromise. Nonlinear elements present in



the ring also limit the accuracy of the procedure. Nonlinear elements would not affect the
one quadrupole, null measurement of section 1, but their presence reduces the accuracy
of the closed orbit algorithms. All effects mentioned in this paragraph are subject to
investigation using UAL or another simulation code. Our (very limited) investigations
started with the guess that a one percent alteration of quad strengths (f = 0.01) would be
satisfactory. At this level we find the algorithm to be essentially unaffected by changing
the chromaticities from their natural (all chromaticity sextupoles off) values to being zero
in both planes. Similarly the procedure is little affected by the inclusion or exclusion of
magnet imperfections at anticipated levels.

The achievable accuracy can be estimated as follows. Let us concentrate on vertical
orbit smoothing. If the lattice is taken to consist of nothing but 90 degree FODO cells and
the tune is () there will be 8(¢) quads altogether, each with its local BPM. But of these only
half are close to vertical quads where their accuracy is high and only about half of those are
favorably located (approximately an odd number of half-betatron-periods form the quad)
relative to a particular vertical steering that is being nulled. If the r.m.s. position error
at a quad of strength ¢; is oy, the r.m.s. deviation of the deflection to be nulled for trim

factor f is fq;oy. The downstream displacement caused by such a deflection is

oq < Btyp.fqm-y (41)

For individually trimmed quads the 2Q) “useful” detectors would improve the nulling pre-
cision by a factor 1/4/2Q. The effect of being forced to trim the N, quads in a family
will exact a loss of accuracy which will erode this factor to 1/,/2Q/N, (or worse.) In-
corporating this estimate in Eq. (4.1), using the estimate fiyp.¢; ~ 1 and solving for o,
yields

~ oq [Ny
— = 4.2

as the estimated accuracy with which the closed orbit can be steered through the quadrupole
center. Taking the square root factor as 1, the precision with which the orbit can be steered
through the quad is approximately the BPM precision eroded by factor 1/f. With f being
of order 0.01 the steering accuracy is 100 times worse than the measurement accuracy. To

achieve 0.1 mm steering accuracy will require something like 1 um BPM reproducibility.



Note, though, that it is short term reproduceability not absolute or even long term relative
accuracy that is required. Perhaps the required precision could be attained using very low
frequency excitation with lock-in detection. Least count precision of the steering power

supplies may also be an issue, as the required deflections are very small.

5. UAL Simulation Tools

This is not the place for full documentation of the UAL simulation environment. But to
give the flavor of the user interface a few fragments of code will be given. Two points are

especially important:

e UAL has no proprietary input language, neither for lattice description nor to specify
the simulation commands to be executed. Rather the input takes the form of a
valid PERL program, where PERL is a popular “scripting” language. This program
can read in a standard lattice description, such as a MAD description or SXF or
ADXF, make ad hoc specialized changes not included in these descriptions, and
then proceed to the desired simulation.

e The mechanism for specifying families of elements (such as all quadrupoles of type
QFH) is very different from the type= mechanism of MAD and other lattice pro-
grams. Rather a family is specified by the “explicit” listing of the names of the

elements making up the faurnily.Jr

A crude outline of the SNS lattice is shown in Fig. 5.1 Here are a few fragments from

the MAD lattice description file:

t The word “explicit” is placed in quotation marks because the so-called “regular expression” mechanism
is used to specify families and the element selection by regular expression may not look all that explicit to a
reader unfamiliar with regular expressions. This will be clarified somewhat by examples to be given shortly.
The consistent naming of lattice elements has always been an important consideration in writing lattice
description files. It is important for conveying the intended purposes for the various elements and for the
exact association of elements in external models with elements in the tunnel. UAL makes naming scheme
discipline all the more important. It is very convenient for all elements of a family (for example because
they share the same bus) to have the same name. But this is too much to ask in general as it fails to allow
for “overlap” of the different sorts of family that need to be defined. The regular expression mechanism
permits the efficient selection of elements even in the face of such type overlap, but only if a consistent
naming scheme is carefully respected. As a last resort a family can, in fact, be defined within UAL as a
really explicit list of all of its elements. An example of this will be given below. When first encountered the
regular expression approach may seem awkward to the user but it is a “feature”, not a “bug”, as it solves
a really hard simulation problem—how to specify families without the need for ad hoc tampering with the
lattice description language? Such tampering frequently leads to errors and always erodes portability.



10

kickhd
kickvd

detector/adjuster
package
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QFH bus
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g

Figure 5.1: SNS lattice showing the particular family of quadrupoles
used in the paper to illustrate beam-based quadrupole alignment when
quadrupoles cannot be trimmed individually. The QFH elements are half-
quads. In real life the BPM’s and kickers would be somewhat displaced
from the actual full quads.

C
d
N\
j
f

! BmBasedBPMAlign.mad

! Half Quadrupoles
QFH : QUADRUPOLE, L
QFBH : QUADRUPOLE, L

KF/Brho ! defocusing arc quad (21Q40)
KF/Brho ! large focusing arc quad (26Q38)

1q9/2, K1
1q/2, K1

! Steering elements and BPM’s
kickha : HKICKER
bpmha : HMONITOR

QF_a : LINE

= (QFH1,QFH,kickha,kickva,bpmha,bpmva,QFH,QFH2)
QF_b : LINE = (QFH1,QFH,kickhb,kickvb,bpmhb,bpmvb,QFH,QFH2)
Aéf;a : line = (OARC,BND,OARC,QF_a)
Aﬁé;a : line = (ACF_a,ACFM,ACS1,ACS2,ACS3,ACS4,ACF_e,ACFL)
Sé;é : line = (INSERT,ARC_a)

RING : line = (SP_a,SP_b,SP_c,SP_d)
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As cryptic and abbreviated as it is, along with the figure this fragment is intended to
show, more or less, how the eight QFH elements are distributed around the ring and
how their associated kickers and BPM’s are given similar, but distinguishable, names,
kickha,kickhb,. .. kickhh, and bpmha,bpmhb,... ,bpmhh, and so on.T The ring consists of
four similar sectors, with two QFH elements in each. Already in the MAD description
the QFH quads are, in fact, half quads. This is convenient in that the kickers and BPM’s
have been situated at the centers of the actual physical quadrupoles. Of course this is an
unphysical idealization of what is possible in practice but it avoids the need for the sort of
“housekeeping” corrections described elsewhere in this report.

Next to be listed are some fragments from the UAL command file (i.e. PERL program)
BmBasedBPMAlign.pl used for the simulation being described. This program is available
at the same site as the files listed previously. The little circled numbers are included for

convenience of reference in the following section. First the line @
$shell->readMAD("file" => "./data/BmBasedBPMAlign.mad");

reads in the MAD lattice description file. To make the simulation more realistic it is
appropriate to introduce random field errors with statements like @
$shell->addFieldError("elements" => "~ (ql[fd][lc]lh|qgfbh)$", "R" => 0.12,
"p" => [0.0, 0.0, 0.4, 0.1, 0.7, -12.10, 0.0, 0.0, 0.0, 0.0]1);
where the assigned erect multipole errors (in conventional units) at reference radius R =
12 cm are enclosed in square brackets. (For skew errors “b” would be replaced by “a”.)
The actual values used come from early magnet measurements; they are probably not
up to date. The cryptic expression ‘¢ (q[fd] [1clh|qfbh)$’’ is the regular expression
specifying the elements to which multipole errors are to be assigned. Only four comments
will be made about this, but they should be enough to give the general idea of how families
are defined. (i) Element names are case-insensitive. Uppercase names are converted to
lowercase before processing. Hence, for example, “QFBF” becomes “qfbh”. (ii) The symbol

¢ <72 forces name matching to start at the beginning of the name. So the < <" (q...’’ part

t The critical reader may complain about the inconsistency of naming QF_a with underscore but kickha,
bpmbha, etc. without. This was, in fact, the first notation adopted, but note that, after lower case conversion
QFh becomes qfh, which clashes with the QFH name. This is the sort of care in naming whose necessity
was warned of earlier.
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of the regular expression allows names beginning with “q” to be candidates for inclusion
(provided they also meet other later requirements). (iii) The symbol ¢ ...$°’ forces

name matching to end at the end of the name. So the ¢ 7 (

)$’’ part of the regular
expression limits both the beginning and ending match. (iv) The part of the regular
expression ( ... [qfbh) gives qfbh as one of the strings whose presence makes the name
a candidate for inclusion. This (along with the requirements already mentioned) shows
that the element “QFBH” from the code fragment above will be one of the magnets to
have field errors added; its name (after conversion to lower case) includes the string “qfbh”
and matches both at beginning and end. This is an example of the “last resort” explicit

name inclusion mentioned above in that element name “QFBH” is specified “explicitly”.

The next UAL command begins the actual simulation: @

$shell->addMisalignment ("elements" => "~“qfh$",
"dx" => 0.01, "dy" => 0.01, "engine" => $rgenerator);
This applies random, Monte Carlo (version specified by $rgenerator) generated alignment
errors, with r.m.s. deviations of 1cm in both planes, to all QFH elements. The subse-
quent, task of the simulation is to recover these numbers using the beam-based calibration
procedure.

The next instructions are @

$shell->hsteer("adjusters" => "“kickh", "detectors" => "“bpmh");
$shell->vsteer("adjusters" => "“kickv", "detectors" => "“bpmv");

These adjust the kicker magnets to smooth the orbit. As explained previously the resulting
orbit is “smooth” only in the sense that it passes through the electrical centers of the QFH
BPM'’s, but this completes the simulation of the operational set-up phase.

The next step is @

$f = 0.01;

$dqInUnits = 10000.0%$f;

$shell->addFieldError("elements" => "~qfh$", "R" => 0.1,
"b" => [0.0, $dqInUnits]);

This introduces the fraction f by which quad strenths are to be incremented (in this case
one percent) converts it into absolute units and increments all QFH elements.

Another smoothing is required next: @
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$shell->hsteer("adjusters" => "“kickh", "detectors" => "“bpmh");
$shell->vsteer("adjusters" => "“kickv", "detectors" => "“bpmv");

Finally the kicker strengths found in this smoothing are recovered: @

$shell->getMagnetStrengths("elements" => "“kickh",

"order" => 0, ‘‘attid’’ => ‘‘b’’);
$shell->getMagnetStrengths("elements" => "“kickv",

"order" => 0, ‘‘attid’’ => ‘‘a’’);

The actual control file has more commands than have been exhibited, for example to

perform iteration steps or to generate output data.

6. Numerical Output From the Simulation

In this section some output data from the simulation sketched in the previous section
is given. (The UAL commands directing the calculation were shown but the commands

causing the printout were not.) The next table was output after step @ of the previous

section.
g_num el_index kll_bef del_x del_y defl_x kickh defl_y kickv
0 49 0.17187 0.00313 -0.00145 0.00145 -0.00146 -0.00240 -0.00266
1 54 0.17187 -0.01158 -0.01250
2 1056 0.17187 0.01003 0.01144 -0.00138 0.00139 0.00102 0.00120
3 110 0.17187 -0.00202 -0.00552
4 164 0.17187 -0.00388 -0.00507 -0.00131 0.00130 -0.00209 -0.00217
5 169 0.17187 0.01151 -0.00712
6 220 0.17187 -0.00077 0.01405 0.00222 -0.00223 0.00406 0.00404
7 225 0.17187 -0.01213 0.00958
8 279 0.17187 0.00069  0.00882 -0.00008 0.00014 -0.00088 -0.00097
9 284 0.17187 -0.00023 -0.01394
10 335 0.17187 -0.02179 -0.00303 0.00115 -0.00112 -0.00091 -0.00085
11 340 0.17187 0.01509 -0.00225
12 394 0.17187 -0.00739 0.00697 0.00133 -0.00136 0.00115 0.00121
13 399 0.17187 -0.00033 -0.00028
14 450 0.17187 0.00394 -0.00516 -0.00131 0.00129 0.00192 0.00190
15 455 0.17187 0.00365 0.01632

This listing has a row for each of the 16 half-quadrupoles. Within TEAPOT, like MAD,
the lattice is completely “flattened” into a sequential list of elements. The second column
gives the indices of the QFH quads. The “kl1_bef” column gives the starting values of the
quadrupole strengths (inverse focal lengths in inverse meters.) These entries were obtained
using an instruction like @ . The columns “del x” and “del_y” show the alignment errors

introduced in step @ . (Of course these values would be unknown in actual operations.)



14

Because the two quad halves have been assigned uncorrelated random misalignments the
closed orbit shift is proportional to the sum of these misalignments. It would be more real-
istic to correlate the misalignments applied to the separate halves, perhaps even modeling
quad rotation as well. What has been done is equivalent to having applied both random
translation and random rotation misalignments. The net horizontal deflections (in radi-
ans), (sum of displacements)*quad-strength, are given in column “defl_x”. The horizontal
kicker strengths found in step @ are given in column “kickh”. Even though the actual
BPM calibration has not yet begun these numbers are clearly promising, since the kicks
found (both horizontal and vertical) agree well with the deflections caused by the quad
misalignments. But this determination was “easy” for hsteer and vsteer since the closed
orbit shift (as well as being proportional to the misalignment) is proportional to the full
quadrupole strength. In the next step the closed orbit shift is derated by the fractional

increment factor f which is of order one percent.

The next table was output from UAL after the completion of step @ .

g_num el_index del_kick_x -defl_xx*f

0 49 -0.0000147 -0.0000145
105 0.0000141  0.0000138 0.0000118 0.0000102
164 0.0000132 0.0000131 | -0.0000214 -0.0000209

| del_kick_y defl_yx*f

|

|

|
220 -0.0000227 -0.0000222 | 0.0000399 0.0000406

|

|

|

|

-0.0000262 -0.0000240

279 0.0000015 0.0000008 | -0.0000096 -0.0000088
335 -0.0000114 -0.0000115 | -0.0000084 -0.0000091
394 -0.0000138 -0.0000133 0.0000119 0.0000115
450 0.0000131 0.0000131 0.0000187 0.0000192

~N O O WN -

There is one row for each quadrupole (two half-quads). The column labeled “del_kick x”,
the only new horizontal data in the table, gives the change in kicker strength that hsteer
found was needed to re-smooth the orbit after the quad strengths had been trimmed.
These entries are to be compared with entries in the column “-defl x*f” which are the
deflections caused by the quad trimming; they are calculated as the deflections from the
previous table de-rated by factor f. The agreement between these two columns confirms
the applicability of Eqgs. (1.2).

The corresponding vertical entries also agree well. (The sign difference is an artifact
of the vertical sign convention.) But the agreement is less good. This is probably what

should have been expected since the quad family being studied is horizontally focusing so
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the horizontal beta function is larger than the vertical beta function at locations of this

particular family of quadrupoles.

7. Relaxation of Hardware Requirements

It has been emphasized that the alignment procedure relies on a null measurement. A
quad deflection is nulled against an adjacent steering element. It follows that any particular
quadrupole can only be determined if there is a steering element nearby. (Exactly how near
has not been specified. For an example discussed below the error from this extrapolation
must be held to less than 0.1 mm.) There was therefore no choice as to which adjustors
had to be used and the condition N, = N, was automatic. But it was not really necessary
to use detectors adjacent to the quads being studied. Formally at least, any N, could
have been chosen and a unique solution would follow. But that is not the point; choosing
N4 >> N, is even better. The solution is still unique and the more detectors in use the
more robust the measurement. If some of the quads being measured lack BPM’s it really
doesn’t matter, except for the inconvenience of not having a secondary standard for beam
centering at that location.

Another relaxation concerns the importance of accurate location of BPM’s relative to
quads. There is no importance whatsoever. The BPM’s are only being used to establish
the nulling, so their positions don’t matter. This is much the same argument as was made
in the previous paragraph.

Another relaxation relates to the actual operational procedure. So far it was stated
that a set-up phase in which the QDF closed orbit was smoothed was to be followed by
the actual calibration phase. But the set-up phase was really superfluous—as much as
anything it was introduced as a pedagogical ruse to exercise and illustrate the simulation.
Starting from any ragged orbit (though not so ragged as to bring nonlinear elements into
the picture), after applying the systematic (factor f) quad trim, the only requirement is
for the smoothing program to restore the closed orbit. The adjustor strengths needed to

do this are just those that null the quad misalignment kinks.
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8. Conclusions and Comments

An algorithm for centering the beam on all quadrupoles has been described. The algorithm
is applicable even when multiple quad trims are powered from the same bus. Some effects
that could potentially cause the algorithm to fail have been investigated. Sextupoles of
strength needed to adjust chromaticities to zero have negligible effect. So also do the

random and systematic magnetic field errors assumed in the only lattice file investigated.

Other effects, potentially more limiting, have not been investigated. A simulation such
as this one could, however, anticipate the degree to which this calibration procedure would
be reliable. Electronic noise and stability could be estimated and included. Also instru-

mentation issues such as the required least count precision of analog to digital conversion

could be addressed.

For actual coding of the algorithm into the control system a certain amount of “house-
keeping” would be needed. For robustness, allowances should be made for the occasional
broken or missing BPM or kicker. Also correction will be needed to compensate for the
effects of small relative longitudinal displacements of quads, BPM’s, and kickers. The sort
of modification required is illustrated in Fig. 8.1. Because the local kicker K; is slightly
displaced longitudinally it cannot, by itself, completely cancel the effect of strength trim-
ming of quad ¢;. But a (relatively much smaller) compensating kick by kicker K;_; can
null the orbit everywhere outside the range from K;_; to K;. Determination of the offset
x; will still be dominated by the setting of K;, but with a correction (smaller by a factor
of order [/L) depending on K;_j. Since the interpolation error in this procedure is itself

proportional to the local slope, it is subject to being reduced in subsequent iterations.

The procedure that has been described has to be applied successively to all the quad
families in the ring. (If there are no trim circuits whatsoever one can (at least in principle)
apply the method by using the main quad bus or buses.) Once all quads displacements
have been determined the information is available for a final application of the smoothing

algorithms to put the closed orbit through the effective centers of every quadrupole.

The measurable signal is proportional to the fractional quad trim f. Since the accuracy
of the method is sure to be limited by BPM irreproducability one will always be tempted

to increase f. But the tolerable value of f is limited by the tolerable level of lattice



17

orbit after quad initial qi
trim and re-steering orbit

\

orbit after
quad trim

Figure 8.1: Displacement z; is being inferred by the strength of kicker
K; needed to null the effect of changing quad ¢; by fractional amount f.
Because kicker K; is not quite superimposed on the quad, a small deflection
by neighbouring kicker K;_1 is needed to null the orbit everywhere else in
the ring.

distortion. M. Blaskiewicz points out that trimming pairs of families simulataneously may
allow a large increase in tolerable f value if appropriate trim strengths and polarities are

chosen.

Finally it can be asked “does this procedure yield the best possible closed orbit?” Any
answer to this question has to be qualified since factors other than those considered (such as
the need to avoid obstacles) may enter. Also it would not be unprecedented for the BPM’s
to be so erratic that they could not even produce reliable null settings. Let us ignore such
possibilities. With this qualifications there is an interpretation of the question above such
that the answer is “yes!” The reason accelerators are high-strung and tempermental is not
that they have many-many bending magnets but that they have many-many lenses. If the
closed orbit goes through the effective centers of all quads then the optics will agree well
with the design optics and will be relatively insensitive to quadrupole deviations from their
design global positions. This means that (like the BPM positioning) the quad positioning

is also not critical provided one steers the beam through quad centers.

The previous paragraph may be regarded as too glib. A more conventional specification
would be to require the orbit to be coplanar to some accuracy, say £0.5mm. In this
circumstance the ultimate achievable coplanarity will be limited by the accuracy with which
effective quad centers lie on the same horizontal plane. With customary survey methods
it should be possible to position the geometric centers with an accuracy of 0.1 mm, and

it should be possible to maintain comparable accuracy for the relation between geometric
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and effective quad centers. If these conditions have been met, the procedure advocated
in this note could be useful provided its accuracy is comparable. This would require the
precision given by Eq. (4.2) not to exceed 0.1 mm. Once all these things have been achieved
it would surely be vertical steering caused by bending magnet roll errors that would limit
the coplanarity. If these errors are sufficiently small an orbit coplanar to better than
+0.5 mm would seem to be achievable.

There is one important situation in which steering through quad centers is not opti-
mal. Suppose it is critical that the closed orbit be optimized for the preservation of spin
orientation. Unwanted spin precession occurs due to vertical bends, be they due to vertical
displacement in quads, to roll errors in dipole magnets, or to vertical steering correctors.
In this case it is not optimal for the closed orbit to pass through quad centers. Precession
due to steering in a quad can be cancelled in the adjacent steering element, provided, of
course, that there is no intervening bend. If there were no roll errors in bending magnets
and all effective quad centers were coplanar (neither of which is realistic) the optimal orbit
would pass through quad centers, but the realistically optimal orbit has to be a compromise
among the different vertical steering contributions. Any practical scheme for achieving this
compromise would rely on the absolute BPM accuracy.

One way the null method of this note could contribute would be to measure the align-
ments of BPM electrical centers relative to quadrupole effective centers, since these pre-
cisions determine the accuracy of practical optimation schemes. An even more optimistic
scenario assumes that all bending magnet roll errors have been eliminated but the effec-
tive quad centers have unknown coplanarity. Then the orbit best preserving polarization
could have appreciable bending in individual quads provided the bending was immediately
canceled by the adjacent steering corrector. In this case it would be advantageous for
the (bend free) separation between quad and steering corrector to be large, not small, so
vertical orbit excursions could be corrected with small deflections.

We wish to acknowledge useful conversations with M. Blaskiewicz, W. Fischer, Y.
Lee, D. Raparia (who suggested the investigation), and J. Wei. We make no claim of
originality for anything in the report (other than the simulation tools.) The ideas are all
pretty obvious and have no doubt been published in the past. For example a recent paper

by D. Barber et al. Application of a Beam Based Alignment Technique for Optimizing
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The Electron Spin Polarization at HERA, EPAC96, Sitges/Spain (1996) describes, with
numerous references, procedures that appear to be similar to the ones considered in this

report.



